Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find how protein allows insects to detect and respond to pheromones

20.01.2005


How do insects smell? Badly, according to a new study, if they lack a certain kind of protein critical to their ability to detect and interpret pheromones – the insect equivalent of "smelling."



Researchers at UT Southwestern Medical Center have discovered how a protein, called an olfactory binding protein, links incoming pheromone signals and specific nerve cells in an insect’s brain, which in turn translate those signals. Pheromones are chemical signals given off by animals that, when detected by others of the same species, mediate a variety of behaviors, such as feeding, mating and colonizing.

The findings not only shed light on insect behavior, but also suggest that olfactory binding proteins may be new targets for synthetic chemicals that could trick insects like mosquitoes into traps or could function as repellents, said Dr. Dean Smith, associate professor of pharmacology at UT Southwestern and senior author on the study. Humans give off signals that attract mosquitoes, the insect responsible for spreading malaria, which kills up to 3 million people each year.


The research, appearing in the Jan. 20 issue of the journal Neuron, is the first to directly link pheromone-induced behavior with the activity of olfactory binding proteins, or OBPs.

The nerve cells, or neurons, in insects responsible for picking up on pheromone signals have been studied for decades, as have pheromones themselves. But the biochemical mechanism by which pheromones and other odorants selectively activate those sensory neurons is poorly understood. "We’ve known about OBPs for 20 years, but until now their function and significance was unclear," said Dr. Smith, who works in the Center for Basic Neuroscience. Olfactory binding proteins are produced by non-neuronal cells and are secreted into the fluid bathing the dendrites, or nerve endings, of olfactory neurons.

Dr. Smith’s research group found that an OBP in fruit flies called LUSH is required for olfactory neurons to smell the pheromone 11-cis vaccenyl acetate, or VA. Mutant flies lacking the gene that codes for the LUSH protein are unable to detect the VA pheromone and do not display the behavior associated with that pheromone, which normally signals the flies to aggregate in groups.

When the VA pheromone contacts a tiny hair on a fly’s antenna, it binds with the LUSH protein. Once bound, the LUSH protein changes its shape so it can fit into a receptor on the surface of a specific olfactory neuron inside the hair, which sends the appropriate behavioral signal to the bug. "Without LUSH as a bridge, this pheromone can’t get its signal to the neuron and the fly doesn’t behave normally," Dr. Smith said. His research group reinstated the correct behavior in the mutant flies by injecting them with the missing lush gene.

In the absence of the pheromone, the researchers found that LUSH still binds to the olfactory neuron, sparking the neuron to fire a small electrical signal called "spontaneous activity." With the pheromone present, and bound to LUSH, the neuron exhibits a large burst of normal electrical activity. In mutants lacking LUSH, however, they found a 400-fold reduction in spontaneous activity, indicating that LUSH is necessary for the neuron to function properly. "This reduction in spontaneous activity was a surprising finding," Dr. Smith said. "Our results indicate that LUSH, and not the pheromone, is what directly activates the chemosensory neurons. It is likely that OBPs in other insects also work this way, although the pheromones are different in different species. We think that OBPs might be new targets for insect control and repellents." Other studies have also linked OBPs to insect behavior. A 2002 fire ant study suggested a role for OBPs in worker ants’ ability to recognize queens and regulate the number of queens in a colony.

The new UT Southwestern findings represent "a major breakthrough in our understanding of what role olfactory binding proteins play in insect pheromone detection," Drs. Leslie B. Vosshall and Marcus C. Stensmyr of The Rockefeller University wrote in a preview article in the same issue of Neuron.

Dr. Smith and his colleagues first identified the lush gene in the fruit fly Drosophila in 1998. They found that mutant flies lacking the gene respond abnormally in the presence of alcohol. Instead of avoiding it, as normal flies do, the mutant flies flocked to alcohol.

Other UT Southwestern researchers involved in the study are lead author Dr. PingXi Xu, a pharmacology postdoctoral researcher, and former research technician Rachel Atkinson. David N.M. Jones from the University of Colorado Health Sciences Center also contributed.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>