Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find how protein allows insects to detect and respond to pheromones

20.01.2005


How do insects smell? Badly, according to a new study, if they lack a certain kind of protein critical to their ability to detect and interpret pheromones – the insect equivalent of "smelling."



Researchers at UT Southwestern Medical Center have discovered how a protein, called an olfactory binding protein, links incoming pheromone signals and specific nerve cells in an insect’s brain, which in turn translate those signals. Pheromones are chemical signals given off by animals that, when detected by others of the same species, mediate a variety of behaviors, such as feeding, mating and colonizing.

The findings not only shed light on insect behavior, but also suggest that olfactory binding proteins may be new targets for synthetic chemicals that could trick insects like mosquitoes into traps or could function as repellents, said Dr. Dean Smith, associate professor of pharmacology at UT Southwestern and senior author on the study. Humans give off signals that attract mosquitoes, the insect responsible for spreading malaria, which kills up to 3 million people each year.


The research, appearing in the Jan. 20 issue of the journal Neuron, is the first to directly link pheromone-induced behavior with the activity of olfactory binding proteins, or OBPs.

The nerve cells, or neurons, in insects responsible for picking up on pheromone signals have been studied for decades, as have pheromones themselves. But the biochemical mechanism by which pheromones and other odorants selectively activate those sensory neurons is poorly understood. "We’ve known about OBPs for 20 years, but until now their function and significance was unclear," said Dr. Smith, who works in the Center for Basic Neuroscience. Olfactory binding proteins are produced by non-neuronal cells and are secreted into the fluid bathing the dendrites, or nerve endings, of olfactory neurons.

Dr. Smith’s research group found that an OBP in fruit flies called LUSH is required for olfactory neurons to smell the pheromone 11-cis vaccenyl acetate, or VA. Mutant flies lacking the gene that codes for the LUSH protein are unable to detect the VA pheromone and do not display the behavior associated with that pheromone, which normally signals the flies to aggregate in groups.

When the VA pheromone contacts a tiny hair on a fly’s antenna, it binds with the LUSH protein. Once bound, the LUSH protein changes its shape so it can fit into a receptor on the surface of a specific olfactory neuron inside the hair, which sends the appropriate behavioral signal to the bug. "Without LUSH as a bridge, this pheromone can’t get its signal to the neuron and the fly doesn’t behave normally," Dr. Smith said. His research group reinstated the correct behavior in the mutant flies by injecting them with the missing lush gene.

In the absence of the pheromone, the researchers found that LUSH still binds to the olfactory neuron, sparking the neuron to fire a small electrical signal called "spontaneous activity." With the pheromone present, and bound to LUSH, the neuron exhibits a large burst of normal electrical activity. In mutants lacking LUSH, however, they found a 400-fold reduction in spontaneous activity, indicating that LUSH is necessary for the neuron to function properly. "This reduction in spontaneous activity was a surprising finding," Dr. Smith said. "Our results indicate that LUSH, and not the pheromone, is what directly activates the chemosensory neurons. It is likely that OBPs in other insects also work this way, although the pheromones are different in different species. We think that OBPs might be new targets for insect control and repellents." Other studies have also linked OBPs to insect behavior. A 2002 fire ant study suggested a role for OBPs in worker ants’ ability to recognize queens and regulate the number of queens in a colony.

The new UT Southwestern findings represent "a major breakthrough in our understanding of what role olfactory binding proteins play in insect pheromone detection," Drs. Leslie B. Vosshall and Marcus C. Stensmyr of The Rockefeller University wrote in a preview article in the same issue of Neuron.

Dr. Smith and his colleagues first identified the lush gene in the fruit fly Drosophila in 1998. They found that mutant flies lacking the gene respond abnormally in the presence of alcohol. Instead of avoiding it, as normal flies do, the mutant flies flocked to alcohol.

Other UT Southwestern researchers involved in the study are lead author Dr. PingXi Xu, a pharmacology postdoctoral researcher, and former research technician Rachel Atkinson. David N.M. Jones from the University of Colorado Health Sciences Center also contributed.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>