Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iberia was the European demographic reservoir during the last Ice Age

13.01.2005


By studying mitochondrial DNA, which is passed from mother to child, researchers have found that most of the actual European inhabitants seem to have come from re-expansion of hunter-gatherers populations, which have migrated from Iberia, Europe after the end of the last Ice Age reports an article in the January issue of Genome Research.

In the study of human evolution through history and pre-history there are now two indispensable sets of genes to follow: Y-chromosome and mitochondrial DNA (mtDNA) genes. Both sets are transmitted uniparentally from one generation to the next - father to son in the case of the Y-chromosome and mother to child in the case of mtDNA - which makes them especially useful to trace lineages.

Mitochondrial DNA is a circular structure composed of 13 genes and exists, as the name indicates, in mitochondria, which are organelles responsible for energy production in the cell. Mitochondrial DNA sequences can be divided in different groups – haplogroups – according to genetic variations (or polymorphisms). Each haplogroup can then be divided into sub-clades (or sub-groups) according to further polymorphisms. Because it is possible to calculate the changes occurring in mtDNA in a certain period of time (the rate of change is constant and known) it is possible to follow in time the different sub-clades and learn when they did get separated, and consequently their individual migrations/geographical separations.



And in fact, the study of mtDNA haplogroups has been used to understand better the migrations of human population throughout evolution. Unfortunately, this has not been possible in Europe, although some progress has been made on a relatively rare haplogroup V. But around half of the European mtDNA sequences belong to a haplogroup (H) and so far it had been impossible to understand its evolutionary pathway in the continent.

But now Luísa Pereira, Martin Richards, Ana Goios, Vincent Macaulay, António Amorim and colleagues from Spain, Israel, Russia, Germany, Dubai, Czech Republic and Ireland, taking advantage of recently available information on haplogroup H polymorphisms, decided to make a new attempt to understand the European migrations throughout evolution. The team of scientists analysed 649 individuals of the H haplogroup from 20 populations throughout Europe, Caucasus and the near East and, by managing to trace the localisation of the different sub-clades, were able to further resolve the evolutionary (and migrational) history of haplogroup H and modern Europeans.

In fact, it is believed that haplogroup H evolved in the Near East around 28.000-30.000 years ago and spread throughout Europe 20.000 years ago. Although it was thought that some, or all, of the European population of this haplogroup have re-expanded throughout the continent from a European glacial refuge 15.000 years ago, this was not possible to be confirmed. Now Pereira, Richards, Goios, Macaulay, Amorim and colleagues’ work not only confirms that in fact the oldest lineage of H (called H*) was found in the near East and entered Europe during the peak of the last Ice Age, but also claims to have identified the glacial refuge in Europe from where humans re-expanded as Iberia.

Pereira, Richards, Goios, Macaulay, Amorim and colleagues’ work is important for the history of human evolution suggesting that most modern Europeans evolved from hunter-gathers that expanded at the end of the last Ice Age (end of the Palaeolithic) from a glacial refuge in Iberia where they have stayed for around 10,000 years after an initial migration from the Near East.

Piece researched and written by: Catarina Amorim ( catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.genome.org/cgi/content/abstract/15/1/19?ct

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>