Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New family of genes could serve as a potential cancer marker

11.01.2005


A new family of genes called Novel Structure Proteins (NSP) discovered by researchers in the Sbarro Institute for Cancer Research and Molecular Medicine in Temple University’s College of Science and Technology could have the potential for predicting the possibility of tumor growth in a patient.



The study was done by Nianli Sang, Ph.D., then a doctoral student at the University and now an assistant professor at Thomas Jefferson University and the Cardeza Foundation. It was initiated and led by Antonio Giordano, M.D., Ph.D., director of the Sbarro Institute and co-director of the Center for Biotechnology at Temple. Their findings, "A gene highly expressed in tumor cells encodes novel structure proteins," are reported in the latest issue of Oncogene (Vol. 23, No. 58).

"We succeeded in cloning several related but distinct cDNA that encode for novel structure proteins," says Giordano. "The identification of these clones shows that these genes are unique and that the major structure of these genes encodes for a region of our chromosome that is important to its structural maintenance. Therefore, this gene could be very important in controlling the backbone of our cells."


Giordano says that their initial analysis shows that this family of genes sits mostly in the nucleus of our cells and exhibits the characteristics of a tumor-promoting gene. One form of the gene, NSP5a3a, is highly expressed in some tumor cell lines and could be very useful as a tumor marker, he adds.

"Knowing the genetic status of this family of genes and understanding how the alteration of NSP can affect that genetic status could be a strong indicator of malignancy," explains Giordano. "By analyzing this gene, we may be able to predict the possibility of tumor growth."

Giordano, who discovered the tumor-suppressing gene Rb2/p130 and others such as Cdk9 and Cdk10, says his Temple institute plans further study on the protein that is encoded by the gene. Next steps could include generating tools that would allow researchers to develop a more precise diagnostic test into whether the cells containing NSP are potentially tumorigenic.

He adds that the in the future this gene may also be used as a specific target for cancer therapies. Drugs could be developed that would inhibit the genes’ tumor-promoting activity, he says.

"The discovery of NSP adds another important player to the race for understanding the molecular mechanisms behind the transformation for normal cells into cancer cells," says Giordano. "This family of genes is going to add another critical tool in trying to understand the errors of genetic language and the progression of cancer, therefore giving researchers possible new solutions to reversing this dreadful disease."

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu
http://www.shro.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>