Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can plant research lead to new insights in cancer research?

11.01.2005


Ghent - The development of cancer is a complex process with a number of different causes. The root problem is loss of control in the cell division process. A fundamental biological process, cell division can be studied in many organisms. Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected with Ghent University are studying cell division in plants and thereby uncovering general principles. They are now revealing the importance of the DEL1 protein in the control of cell division in the Arabidopsis plant. The scientists suspect that the human variant of this protein, E2F7, performs the same essential function in human cells. Their research is bringing to light a potentially new class of genes that can suppress the growth of tumors.



Loss of control...

Our body is constructed of cells that contain the hereditary material (DNA) distributed among chromosomes - 46 in human cells. Under normal circumstances, our body’s cells divide continuously in a very controlled manner: every cell division is preceded by a doubling of the DNA, so that, after division, two cells are formed, each containing 46 chromosomes. But sometimes this process goes wrong, giving rise to cells with an incorrect number of chromosomes. Such an occurrence can undermine the precise control system governing cell division, so that the cell begins to divide without restraint, turning into a cancer cell.


New insights from an unexpected quarter

In a small plant like Arabidopsis (or the mouse ear cress), processes such as DNA doubling and cell division are also subject to a complex control system. The VIB research group, under the direction of Lieven De Veylder and Dirk Inzé, is studying cell division in Arabidopsis during the plant’s development and, in particular, the function of the DEL1 protein in the cell division process. For this study, they modified plants genetically so that they no longer produced DEL1. The researchers saw that the cells of these modified plants contained noticeably more DNA than the cells of normal Arabidopsis plants. By shutting down DEL1, a doubling of the cell’s DNA is no longer automatically followed by cell division. Their research demonstrates the importance of DEL1 in the control mechanism of DNA doubling and cell division.

From plants to people?

De Veylder and Inzé suspect that the E2F7 protein - the human counterpart to DEL1 - performs a function in human cells analogous to that of DEL1 in Arabidopsis. According to these scientists, an error in E2F7 could lead to cells containing too many chromosomes, and thus to cancer cells. They want to develop this line of reasoning further with a partner in cancer research in order to better understand the factors that underlie cancer.

Sooike Stoops | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>