Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Movement Linked to Formation of Antibody Genes

07.01.2005


Peter W. Atkinson, a University of California, Riverside professor of entomology and member of the university’s Institute for Integrative Genome Biology, is part of a team that has linked the movement of small pieces of DNA, known as transposable elements, to a process called V(D)J recombination that produces the genetic diversity responsible for the production of antibodies. This will help scientists understand the mixing and matching of DNA in organisms and the role this mixing plays in healthy and diseased cells.



Nancy L. Craig from the Howard Hughes Medical Institute and Department of Molecular Biology & Genetics at Johns Hopkins Medical Institute led the team, which published its findings in this week’s issue of the journal Nature, in a paper titled Transposition of hAT elements links transposable elements and V(D)J recombination. Also on the team were Liqin Zhou and Rupak Mitra from Johns Hopkins, and Alison Burgess Hickman and Fred Dyda from the Laboratory of Molecular Biology at the National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md.

“These functional and comparative studies link the movement of transposable elements and V(D)J recombination. This outcome has implications for understanding transposable element movement in all organisms as well as the role that transpositional type recombination mechanisms have in chromosomal rearrangements of both healthy and diseased cells,” Atkinson said. “Of growing interest is the role that some of these rearrangements may play in the genesis of some cancers.”


Transposable elements, or small pieces of DNA that can move around within and sometimes between genomes, move through a process called transposition. Transposable elements are classified by their mechanisms of transposition. V(D)J recombination is the process by which antigen receptor genes, which encode antibodies, are created in specialized blood cells called B lymphocytes. This regulated process that involves local chromosomal rearrangements such as deletions and inversions is responsible for generating the diversity of antibodies produced by these cells.

For many years these two processes– transposable element transposition and V(D)J recombination – were thought to have some similarities and therefore may have evolved from an ancestral recombination system. “No one, however, could establish this link. The work described in this paper establishes this link,” said Atkinson.

The paper describes the mechanism by which a member of one family of transposable elements actually moves. This element is called Hermes and was discovered by Atkinson and David O’Brochta of the University of Maryland about a decade ago. The element comes from the housefly and is a member of the hAT family of transposable elements that includes the Ac element of maize, which Geneticist Barbara McClintock, of the Carnegie Institution’s Cold Harbor Laboratory in New York, discovered many decades ago.

The paper shows that, like many transposable elements, Hermes cuts away from donor DNA via double strand breaks and that the ends of the element then join to the target DNA. Unlike other transposable elements, hairpin intermediates are formed at the ends of the donor DNA rather than on the ends of the element itself. This also occurs during V(D)J recombination.

In addition, comparison of the secondary structure of the Hermes transposase (the enzyme that mediates Hermes element transposition) with the RAG1 recombinase (the enzyme that mediates V(D)J recombination) and the transposases of some retroviruses shows clear similarities between these recombination enzymes.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>