Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No blind mice, thanks to UF scientists

07.01.2005


University of Florida stem cell scientists reported today (Jan. 3) that they have prevented blindness in mice afflicted with a condition similar to one that robs thousands of diabetic Americans of their eyesight each year.



Writing in the current issue of the Journal of Clinical Investigation, researchers describe for the first time the link between a protein known as SDF-1 and retinopathy, a complication of diabetes and the leading cause of blindness in working-age Americans.

Scientists explain how they used a common antibody to block the formation of SDF-1 in the eyeballs of mice with simulated retinopathy, ending the explosive blood vessel growth that characterizes the condition. Researchers effectively silenced SDF-1’s signal to activate normally helpful blood stem cells, which become too much of a good thing within the close confines of the eyeball.


“SDF-1 is the main thing that tells blood stem cells where to go,” said Edward Scott, an associate professor of molecular genetics at the UF Shands Cancer Center and director of the Program in Stem Cell Biology and Regenerative Medicine at UF’s College of Medicine. “If you get a cut, the body makes SDF-1 at the injury site and the repair cells sniff it out. The concentration of SDF-1 is higher where the cut occurs and it quickly dissipates. But the eye is such a unique place, you’ve got this bag of jelly -- the vitreous -- that just sits there and it fills up with SDF-1. The SDF-1 doesn’t break down. It continues to call the new blood vessels to come that way, causing all the problems.”

Diabetic retinopathy causes 12,000 to 24,000 cases of blindness each year, according to the American Diabetes Association. What happens is high blood pressure and blood sugar levels associated with diabetes cause leaks in blood vessels within the eye and hinder the flow of essential chemicals. The eye compensates by growing new blood vessels, which clog the eye and cause even more leaks. Damage occurs to the retina, gradually destroying its ability to capture images.

UF researchers analyzed samples of the vitreous gel taken from the eyeballs of 46 patients undergoing treatment for diabetic eye disease, including 24 patients with retinopathy. They found SDF-1 in each of the patients, with the highest amounts detected in patients with the worst cases. No traces of SDF-1 were found in the vitreous samples of eight nondiabetic patients who were treated for other ailments.

With the hypothesis that SDF-1 is at the heart of the problem, scientists tested to see whether the addition of the protein would call stem cells and spur extraordinary blood vessel growth in the eyeballs of 10 laboratory mice. They succeeded, creating mice with retinopathy-like conditions. Then, as a treatment, scientists injected an SDF-1 antibody directly into the afflicted eyes. The antibody -- which is simply another protein that binds to the SDF-1 -- disabled SDF-1’s ability to summon stem cells, effectively halting the growth of almost all new blood vessels, said Jason M. Butler, a graduate student in the Interdisciplinary Program in Biomedical Sciences and a member of the research team.

Scientists next want to test the technique in monkeys, and if it continues to be successful, to test the therapy in human clinical trials, said Scott, the senior author of the paper. The National Institutes of Health funded the research in mice. The study in primates will involve support from RegenMed, an Alachua, Fla.-based company founded by Scott and other UF researchers to bring biomedical therapies to the marketplace.

“The scientific community and pharmaceutical companies have a long track record of being able to develop antibody-based therapy in things like snake anti-venoms,” Scott said. “This isn’t a new and unproven technology. This is something that can be rapidly adapted and brought to market.”

Scientists said they still need to find a way to anchor the antibody to a molecule large enough so it can do its SDF-1-blocking work in the vitreous but will be unable to penetrate the retina. They envision a therapy that will involve routine injections of the substance into a patient’s eye.

“It could potentially be a treatment option,” said Dr. Maria Grant, a professor of pharmacology and therapeutics in UF’s College of Medicine who participated in the research. “Current therapy for severe diabetic retinopathy is use of lasers that destroy parts of retina that are not needed for precise vision in order to improve oxygen delivery to the parts of the retina that are needed for detailed vision. Intraocular delivery of agents that block SDF-1 represent an excellent and less destructive alternative.”

The research sheds light on the mechanisms of diabetic retinopathy and the various functions of SDF-1, said Nadir Sheibani, an assistant professor of ophthalmology and visual science at the University of Wisconsin-Madison Medical School.

“Many factors are at work during retinopathy and it’s important to understand each of them,” Sheibani said. “It’s interesting that the researchers show how SDF-1 changes the levels of a protein called occludin, which affects junctions between cells that line the blood vessels. It helps explain why the blood vessels become leaky and edema develops during diabetic retinopathy.”

John Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>