Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher genome of bacterium that helps clean up major groundwater pollutants

07.01.2005


Chemical byproducts of dry cleaning and silicon chip production are dechlorinated by the microbe dehalococcoides ethenogenes



Scientists have deciphered the genome sequence of a microbe that can be used to clean up pollution by chlorinated solvents – a major category of groundwater contaminants that are often left as byproducts of dry cleaning or industrial production.

The study of the DNA sequence of Dehalococcoides ethenogenes, which appears in the January 7 issue of Science, found evidence that the soil bacterium may have developed the metabolic capability to consume chlorinated solvents fairly recently – possibly by acquiring genes in an adaptation related to the increasing prevalence of the pollutants. "The genome sequence contributes greatly to the understanding of what makes this microbe tick and why it’s metabolic diet is so unusual," says TIGR scientist Rekha Seshadri, the primary author of the Science paper.


D. ethenogenes, which was discovered by Cornell University scientists at a sewage treatment plant in Ithaca, NY, is the only known microbe that is known to reductively dechlorinate the pervasive groundwater pollutants tetrachloroethelene (PCE) and trichloroethylene (TCE). That dechlorination produces a nontoxic byproduct, ethene.

A collaborator on the sequencing project is Cornell microbiologist Stephen Zinder, whose lab was the first to isolate the bacterium. Another major collaborator was Lorenz Adrian of the Institute for Biotechnology at the Technical University of Berlin, Germany. The D. ethenogenes project was sponsored by the U.S. Department of Energy’s Office of Biological Energy Research.

Studies by Zinder and others have shown that members of the genus Dehalococcoides are necessary for complete dechlorination of PCE and TCE at contaminated sites. "When I first looked at a purified PCE-degrading culture under a microscope, the tiny organism looked like junk to me," says Zinder. "I never dreamed I’d some day we’d know the genome sequence of that ’junk.’ " Today, environmental consulting companies are using Dehaloccocoides cultures to assure remediation at numerous sites contaminated by PCE or TCE – by one count, there are at least 17 Dehaloccocoides bioremediation sites in ten states, including Texas, Delaware and New Jersey.

"Because chlorinated solvents have polluted so many water sources, there is a pressing need for new techniques to clean up such pollutants," says TIGR Associate Investigator John Heidelberg, the senior author of the Science paper. Heidelberg, who has led several projects to sequence microbes with bioremediation potential, says the sequence information on D. ethenogenes is likely to boost such efforts.

There are several reasons why deciphering a microbe’s DNA sequence can help scientists find better ways to use it. For one, the analysis of that sequence helps researchers learn about how the organism functions on a metabolic level. In the case of D. ethenogenes, scientists found 19 different reductive dehalogenases (RDs) – which allow the microbe to "breathe" chlorinated solvents. Those RDs, in combination with the bacterium’s five hydrogenase complexes and its severely limited repertoire of other metabolic modes, show that D. ethenogenes is highly specialized for respiratory reductive dechlorination using hydrogen as the electron donor.

By comparing the genomic sequence of D. ethenogenes with that of other Dehalococcoides spp. and related organisms that have different capabilities and spectra for dehalogenation, scientists should be able to deepen the understanding of the chemical process and the best ways to use microbes in the bioremediation of sites that are contaminated with halogenated organic compounds.

If scientists can capitalize on what they have learned about the RDs and their regulation, they could design enhanced or more effective approaches for removing TCE and toxic metabolites such as vinyl chloride from the environment. Seshadri says that capability to remove such chlorinated solvents "is important to both the ecology and the economy."

In the long-term, genome data could serve as a foundation for development of phylogenetic and functional marker probes, for detection and monitoring of D. ethenogenes in the environment and for studies of the genetics of microbial populations. The project also will help scientists study the evolution of catabolic pathways.

The study suggests that the microbe may have developed the metabolic capability to consume chlorinated solvents fairly recently – possibly by acquiring genes in an adaptation related to the increasing prevalence of the pollutants. As evidence, they point out that about 13.6 percent of the D. ethenogenes genome consists of integrated elements and four of the RD genes are located in such regions suggesting that they may have been relatively recently added to the microbe’s repertoire.

The genome of D. ethenogenes is the first complete sequence from the green nonsulfur group of bacteria. By comparing its genome sequence with that of the more than 50 other species sequenced at TIGR, scientists have learned more about the phylogenetic diversity of microbes.

As the leading center for microbial genomics, TIGR has now deciphered the genome sequences of numerous microbes that have potential for use in bioremediation. Those include:

  • Geobacter sulfurreducens, which can help mop up uranium pollution and produce energy in the process.
  • Desulfovibrio vulgaris, which can help remediate metallic pollutants such as uranium and chromium.
  • Shewanella oneidensis, which can remove metals such as chromium and uranium from water.
  • Pseudomonas putida, a soil bacterium that breaks down organic pollutants.
  • Deinococcus radiodurans, a radiation-resistant bacterium that can be used to help bioremediate radionucleotides at radioactive waste sites.
  • Caulobacter crescentus, which could be used for bioremediation in low-nutrient aquatic environments.

"These talented microbes are providing us with important tools to help clean up pollutants," says TIGR President Claire M. Fraser, a coauthor of the Science paper. "By revealing the secrets of microbial metabolism, genomics can be a boon to the environment."

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>