Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher genome of bacterium that helps clean up major groundwater pollutants

07.01.2005


Chemical byproducts of dry cleaning and silicon chip production are dechlorinated by the microbe dehalococcoides ethenogenes



Scientists have deciphered the genome sequence of a microbe that can be used to clean up pollution by chlorinated solvents – a major category of groundwater contaminants that are often left as byproducts of dry cleaning or industrial production.

The study of the DNA sequence of Dehalococcoides ethenogenes, which appears in the January 7 issue of Science, found evidence that the soil bacterium may have developed the metabolic capability to consume chlorinated solvents fairly recently – possibly by acquiring genes in an adaptation related to the increasing prevalence of the pollutants. "The genome sequence contributes greatly to the understanding of what makes this microbe tick and why it’s metabolic diet is so unusual," says TIGR scientist Rekha Seshadri, the primary author of the Science paper.


D. ethenogenes, which was discovered by Cornell University scientists at a sewage treatment plant in Ithaca, NY, is the only known microbe that is known to reductively dechlorinate the pervasive groundwater pollutants tetrachloroethelene (PCE) and trichloroethylene (TCE). That dechlorination produces a nontoxic byproduct, ethene.

A collaborator on the sequencing project is Cornell microbiologist Stephen Zinder, whose lab was the first to isolate the bacterium. Another major collaborator was Lorenz Adrian of the Institute for Biotechnology at the Technical University of Berlin, Germany. The D. ethenogenes project was sponsored by the U.S. Department of Energy’s Office of Biological Energy Research.

Studies by Zinder and others have shown that members of the genus Dehalococcoides are necessary for complete dechlorination of PCE and TCE at contaminated sites. "When I first looked at a purified PCE-degrading culture under a microscope, the tiny organism looked like junk to me," says Zinder. "I never dreamed I’d some day we’d know the genome sequence of that ’junk.’ " Today, environmental consulting companies are using Dehaloccocoides cultures to assure remediation at numerous sites contaminated by PCE or TCE – by one count, there are at least 17 Dehaloccocoides bioremediation sites in ten states, including Texas, Delaware and New Jersey.

"Because chlorinated solvents have polluted so many water sources, there is a pressing need for new techniques to clean up such pollutants," says TIGR Associate Investigator John Heidelberg, the senior author of the Science paper. Heidelberg, who has led several projects to sequence microbes with bioremediation potential, says the sequence information on D. ethenogenes is likely to boost such efforts.

There are several reasons why deciphering a microbe’s DNA sequence can help scientists find better ways to use it. For one, the analysis of that sequence helps researchers learn about how the organism functions on a metabolic level. In the case of D. ethenogenes, scientists found 19 different reductive dehalogenases (RDs) – which allow the microbe to "breathe" chlorinated solvents. Those RDs, in combination with the bacterium’s five hydrogenase complexes and its severely limited repertoire of other metabolic modes, show that D. ethenogenes is highly specialized for respiratory reductive dechlorination using hydrogen as the electron donor.

By comparing the genomic sequence of D. ethenogenes with that of other Dehalococcoides spp. and related organisms that have different capabilities and spectra for dehalogenation, scientists should be able to deepen the understanding of the chemical process and the best ways to use microbes in the bioremediation of sites that are contaminated with halogenated organic compounds.

If scientists can capitalize on what they have learned about the RDs and their regulation, they could design enhanced or more effective approaches for removing TCE and toxic metabolites such as vinyl chloride from the environment. Seshadri says that capability to remove such chlorinated solvents "is important to both the ecology and the economy."

In the long-term, genome data could serve as a foundation for development of phylogenetic and functional marker probes, for detection and monitoring of D. ethenogenes in the environment and for studies of the genetics of microbial populations. The project also will help scientists study the evolution of catabolic pathways.

The study suggests that the microbe may have developed the metabolic capability to consume chlorinated solvents fairly recently – possibly by acquiring genes in an adaptation related to the increasing prevalence of the pollutants. As evidence, they point out that about 13.6 percent of the D. ethenogenes genome consists of integrated elements and four of the RD genes are located in such regions suggesting that they may have been relatively recently added to the microbe’s repertoire.

The genome of D. ethenogenes is the first complete sequence from the green nonsulfur group of bacteria. By comparing its genome sequence with that of the more than 50 other species sequenced at TIGR, scientists have learned more about the phylogenetic diversity of microbes.

As the leading center for microbial genomics, TIGR has now deciphered the genome sequences of numerous microbes that have potential for use in bioremediation. Those include:

  • Geobacter sulfurreducens, which can help mop up uranium pollution and produce energy in the process.
  • Desulfovibrio vulgaris, which can help remediate metallic pollutants such as uranium and chromium.
  • Shewanella oneidensis, which can remove metals such as chromium and uranium from water.
  • Pseudomonas putida, a soil bacterium that breaks down organic pollutants.
  • Deinococcus radiodurans, a radiation-resistant bacterium that can be used to help bioremediate radionucleotides at radioactive waste sites.
  • Caulobacter crescentus, which could be used for bioremediation in low-nutrient aquatic environments.

"These talented microbes are providing us with important tools to help clean up pollutants," says TIGR President Claire M. Fraser, a coauthor of the Science paper. "By revealing the secrets of microbial metabolism, genomics can be a boon to the environment."

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>