Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gecko Feet Hold the Key to Self-Cleaning Adhesives

05.01.2005


Duct tape that never loses its stick. Bandages that come off without sticky residue or an "ouch."



Gecko feet may hold the key to the development of synthetic self-cleaning adhesives, according to a biologist from Lewis & Clark College. The research is published in the online early edition of the Proceedings from the National Academy of Sciences of the United States, or PNAS (http://www.pnas.org) during the week of Jan. 3, 2005 (Article #08304: "Evidence for self-cleaning in gecko setae").

"How geckos manage to keep their feet clean while walking about with sticky feet has remained a puzzle until now," said Kellar Autumn, associate professor of biology at Lewis & Clark College. "Geckos don’t groom their feet, and the adhesive on their toes is much too sticky for dirt to be shaken off. Conventional adhesives like tape just get dirtier and dirtier, but we discovered that gecko feet actually become cleaner with repeated use."


Autumn’s new research, published in PNAS, found that the microscopic adhesive hairs--or setae--that create the gecko’s adhesive qualities are also the first known self-cleaning adhesive. According to Autumn, gecko setae isolated from the gecko become cleaner by themselves.

"Our mathematical models suggest that self-cleaning in gecko setae is a result of geometry not chemistry," said Autumn. "This means that synthetic self-cleaning adhesives could be fabricated from a wide variety of materials. The possibilities for future applications of a dry, self-cleaning adhesive are enormous. We envision uses for our discovery ranging from nanosurgery to aerospace applications. Who knows--maybe a gecko-inspired robot with sticky, self-cleaning feet will walk on the dusty surface of Mars someday."

An interdisciplinary team of researchers, led by Autumn, earlier confirmed speculation that the gecko’s amazing climbing ability depends on weak molecular attractive forces called van der Waals forces, named after a Dutch physicist of the late 1800s. Van der Waals forces are weak electrodynamic forces that operate over very small distances but bond to nearly any material. Autumn’s research team rejected a 30-year-old model based on the adhesion chemistry of water molecules. Instead, the research team demonstrated that a gecko’s ability to stick to surfaces depends on geometry--not chemistry--to synthesize the world’s first gecko-based adhesive microstructure.

The setae (microscopic hairs) on the bottom of gecko’s feet are only as long as two diameters of a human hair. That’s 100-millionths of a meter long. Each seta ends with 1,000 even tinier pads at the tip. These tips, called spatulae, are only 200-billionths of a meter wide--below the wavelength of visible light. In 2002, Ronald Fearing, a researcher at the University of California at Berkeley, was able to produce two artificial hair tips, while Autumn and colleagues concluded that "both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures." Fearing’s group later made the first array of synthetic gecko hairs with long stalks (6 micron stalk) and relatively large diameters (6 micron diameter).

The team’s research is supported by the National Science Foundation and the Defense Advanced Research Projects Agency (DARPA). More information about Autumn’s research is available online at http://www.lclark.edu/faculty/autumn/pnas05.html.

| newswise
Further information:
http://www.pnas.org
http://www.lclark.edu/faculty/autumn/pnas05.html
http://www.lclark.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>