Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New signaling step for key player in Crohn’s Disease

29.12.2004


This week, researchers report new findings that elucidate the role of NOD2, a key molecular player in Crohn’s Disease, in the cellular signaling pathways that control inflammatory responses. NOD2’s clinical relevance is clear from the fact that it is encoded by a Crohn’s Disease susceptibility gene. Understanding NOD2 has posed a particularly intriguing challenge for researchers because it appears able to somehow both activate and inhibit inflammatory cytokine responses in the cell. The work is reported by Lewis Cantley and colleagues at Harvard Medical School.



Crohn’s Disease is an autoimmune inflammatory disorder of the gastrointestinal tract and is histologically characterized by inflammation, epithelial ulceration, fissure formation, and stenosis of segments of the entire gastrointestinal tract. The disease leads to significant morbidity and is thought to result from an inappropriate immune response to bacteria that normally inhabit the gastrointestinal tract. Because Crohn’s Disease is characterized by too much initial acute inflammation, and, subsequently, too little subsequent negative regulation of that inflammatory response, pro-inflammatory and anti-inflammatory pathways appear to be faulty.

Previous work has shown that NOD2 acts as an intracellular receptor for bacteria and bacterial breakdown products, and because it appears capable of both activating and inhibiting inflammatory responses, NOD2 serves as a key integration point for the gastrointestinal tract’s response to infectious organisms. The biochemical nature of NOD2’s dichotomous role is unknown. In the new work, the researchers shed light on this problem by showing that NOD2 activation leads to the modification of NEMO, a central component of the NF-kB signaling pathway controlling inflammatory responses. NOD2 mutations responsible for Crohn’s Disease cause polymorphisms that prevent the NOD2 protein from properly modifying NEMO. These results suggest that this previously unrecognized modification on a component of the major inflammatory signaling pathway in the body helps to integrate inflammatory signals. These results also suggest that this signaling mechanism may ultimately represent a pharmacological target for the amelioration of Crohn’s Disease.


Derek W. Abbott, Andrew Wilkins, John M. Asara, and Lewis C. Cantley: "The Crohn’s Disease Gene, NOD2, Requires RIP2 in Order to Induce Ubiquitinylation of a Novel Site on NEMO"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>