Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic resistant bacterium uses Sonar-like strategy to ’see’ enemies or prey

27.12.2004


For the first time, scientists have found that bacteria can use a Sonar-like system to spot other cells (either normal body cells or other bacteria) and target them for destruction. Reported in the December 24 issue of Science, this finding explains how some bacteria know when to produce a toxin that makes infection more severe. It may lead to the design of new toxin inhibitors. "Blocking or interfering with a bacterium’s "detection" mechanism, should prevent toxin production and limit the severity of infection," says Michael Gilmore, PhD, lead author of the study, and currently director of research at the Schepens Eye Research Institute and professor of ophthalmology at Harvard Medical School.



Gilmore and his team have spent years studying the bacterium known as Enterococcus faecalis, one of the leading causes of hospital-acquired infections, to find new ways to treat them. These infections are frequently resistant to many, and sometimes all, antibiotics. Tens of thousands of deaths due to antibiotic resistant infection occur each year in the US, adding an estimated $ 4 Billion to health care costs. Scientist have known since 1934 that especially harmful strains of Enterococcus produce a toxin that destroys other cells, including human cells and even other types of bacteria. They also knew that this toxin was made only under some conditions. Until Gilmore’s study, scientists were unable to explain how the Enterococcus knew when to make it.

In the Science study, Gilmore and his team found that this toxin is made whenever there is another cell type in the environment near the bacterium, such as a human blood cell. They discovered how these bacteria know when other cells are present, and respond accordingly.


In the laboratory, the team found that Enterococcus releases two substances into the environment. One substance sticks to foreign cells. The second substance reports back and tells the Enterococcus to make the toxin. If no cells are in the area, the first substance sticks to the second, preventing it from reporting back to the Enterococcus, and as a result, no toxin is made. According to Gilmore, "These bacteria are actively probing their environment for enemies or food. Based on whether or not they ’see’ other cells, they make the toxin appropriately."

Gilmore says this discovery has several significant implications for the future. "This is a new mechanism that nature devised to ’see’ the environment, and based on that information, respond accordingly. We may be able to learn from nature and adapt a similar strategy to help the aging population cope with loss of vision," says Gilmore.

"Secondly, this discovery will help us to develop new ways to treat infections that are resistant to antibiotics, making them less severe. Based on an understanding of how this toxin system works, we hope to develop toxin inhibitors," says Gilmore.

The third area of interest is currently science fiction, says Gilmore. "If bacteria can see cells in the environment, maybe we can tame these bacteria and engineer this system so that it can be used to see other things in the environment, such as minerals or possibly other disease-causing bacteria," says Gilmore.

Other members of the research team included Drs. Phillip Coburn, University of Oklahoma Health Sciences Center, Christopher Pillar, Schepens Eye Research Institute and Harvard Medical School, Wolfgang Haas, University of Rochester, and Bradley D. Jett, Oklahoma Baptist University. Dr. Michael S. Gilmore is presently Charles L. Schepens Professor of Ophthalmology, Harvard Medical School, and Marie and DeWalt Ankeny Director and Acting CEO of the Schepens Eye Research Institute.

Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>