Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic resistant bacterium uses Sonar-like strategy to ’see’ enemies or prey

27.12.2004


For the first time, scientists have found that bacteria can use a Sonar-like system to spot other cells (either normal body cells or other bacteria) and target them for destruction. Reported in the December 24 issue of Science, this finding explains how some bacteria know when to produce a toxin that makes infection more severe. It may lead to the design of new toxin inhibitors. "Blocking or interfering with a bacterium’s "detection" mechanism, should prevent toxin production and limit the severity of infection," says Michael Gilmore, PhD, lead author of the study, and currently director of research at the Schepens Eye Research Institute and professor of ophthalmology at Harvard Medical School.



Gilmore and his team have spent years studying the bacterium known as Enterococcus faecalis, one of the leading causes of hospital-acquired infections, to find new ways to treat them. These infections are frequently resistant to many, and sometimes all, antibiotics. Tens of thousands of deaths due to antibiotic resistant infection occur each year in the US, adding an estimated $ 4 Billion to health care costs. Scientist have known since 1934 that especially harmful strains of Enterococcus produce a toxin that destroys other cells, including human cells and even other types of bacteria. They also knew that this toxin was made only under some conditions. Until Gilmore’s study, scientists were unable to explain how the Enterococcus knew when to make it.

In the Science study, Gilmore and his team found that this toxin is made whenever there is another cell type in the environment near the bacterium, such as a human blood cell. They discovered how these bacteria know when other cells are present, and respond accordingly.


In the laboratory, the team found that Enterococcus releases two substances into the environment. One substance sticks to foreign cells. The second substance reports back and tells the Enterococcus to make the toxin. If no cells are in the area, the first substance sticks to the second, preventing it from reporting back to the Enterococcus, and as a result, no toxin is made. According to Gilmore, "These bacteria are actively probing their environment for enemies or food. Based on whether or not they ’see’ other cells, they make the toxin appropriately."

Gilmore says this discovery has several significant implications for the future. "This is a new mechanism that nature devised to ’see’ the environment, and based on that information, respond accordingly. We may be able to learn from nature and adapt a similar strategy to help the aging population cope with loss of vision," says Gilmore.

"Secondly, this discovery will help us to develop new ways to treat infections that are resistant to antibiotics, making them less severe. Based on an understanding of how this toxin system works, we hope to develop toxin inhibitors," says Gilmore.

The third area of interest is currently science fiction, says Gilmore. "If bacteria can see cells in the environment, maybe we can tame these bacteria and engineer this system so that it can be used to see other things in the environment, such as minerals or possibly other disease-causing bacteria," says Gilmore.

Other members of the research team included Drs. Phillip Coburn, University of Oklahoma Health Sciences Center, Christopher Pillar, Schepens Eye Research Institute and Harvard Medical School, Wolfgang Haas, University of Rochester, and Bradley D. Jett, Oklahoma Baptist University. Dr. Michael S. Gilmore is presently Charles L. Schepens Professor of Ophthalmology, Harvard Medical School, and Marie and DeWalt Ankeny Director and Acting CEO of the Schepens Eye Research Institute.

Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>