Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells don festive holiday colors

23.12.2004


The latest holiday gifts being offered to the scientific community this season by scientists in the laboratory of Howard Hughes Medical Institute investigator Roger Y. Tsien come in a dazzling variety of hues -- cherry, strawberry, tangerine, tomato, orange, banana and honeydew. The color spectrum would make Pantone proud.



No, Tsien’s group is not giving out fruit baskets; the names describe vibrant new varieties of fluorescent protein that the researchers have created to tag cells and observe a range of cellular processes. By splicing the genes for the fluorescent proteins into specific genes in the cell, researchers can detect when those genes are switched on to produce proteins. They can then use the telltale fluorescent colors to separate the cells visually. The availability of the new colors will enable scientists to track the effects of multiple genetic alterations in a single cell.

Tsien and his colleagues at the University of California, San Diego, published a research article describing the new fluorescent proteins in the December 2004 issue of the journal Nature Biotechnology. Lead author on the paper was HHMI predoctoral fellow Nathan C. Shaner in Tsien’s laboratory. In separate studies, Tsien’s team "borrowed" the immune system’s machinery for generating antibody diversity and used it to evolve a new red fluorescent protein.


In addition to offering fluorescent proteins in a range of distinctive colors, Tsien’s group has improved their design, creating proteins that are "monomers" that consist of only single protein units. Fluorescent proteins found in nature with yellow to red colors are invariably four-unit agglomerations that are often toxic or disruptive when fused to proteins that scientists hope to track. "The analogy is that if you have a detective who is supposed to be tracking suspects, and that detective has to go around in groups of four and track four suspects at once, the suspects are likely to know something is up," said Tsien.

The latest collection of fluorescent proteins builds on the researchers’ earlier success in reengineering a four-unit fluorescent protein isolated from a coral-like creature of the species Discosoma. From that multimeric protein, the researchers engineered a monomeric protein, called mRFP1, which still retained fluorescent properties. However, certain of these properties were still not optimal for a fluorescent marker.

Shaner, Tsien and their colleagues set out to improve mRFP1’s fluorescent properties -- making strategic mutations in the gene for the protein -- to render it more useful as a biological marker. "Basically, we were trying to guess from the crystal structure of the protein or from past knowledge of mutations, where we might make useful mutations," said Tsien. "In the process of trying to fix these characteristics, we also discovered more colors," he said. Further adjustments to the genes pushed the fluorescence of some of the proteins to longer wavelengths, filling in gaps in the spectrum of colors, said Tsien.

In the Nature Biotechnology article, the researchers also reported a demonstration of the improved functionality of the new proteins. They fused the protein mCherry (the "m" stands for monomeric) to proteins that were part of the cell’s microtubule transport system, and of the cell’s structural cytoskeleton. In both cases, mCherry successfully labeled the cellular structures. However, in the case of the microtubule protein, mRFP1 did not label it properly.

The researchers also created a red protein "tdTomato" in which two subunits still stick to each other, but they have been permanently joined head to tail. The resulting monolithic unit has no tendency to aggregate further, yet it fluoresces more brightly and resists fading better than true monomers. But in some cellular applications their larger molecular weight might interfere with cellular processes, said Tsien. And Tsien’s team has engineered other fluorescent proteins that may be more or less sensitive to changes in acidity.

Tsien said such a variety of fluorescent proteins will enable scientists to have considerable choices in making such tradeoffs, "and one of the reasons we name the proteins after fruits is to remind people that there is no ’best fruit’ in the grocery store," he said.

According to Tsien, the new assortment of fluorescent proteins will give researchers an easier way to track the effects of multiple genetic alterations in the same cells. "They can be applied to single cells, where you want to track different proteins, to different organelles, all the way up to whole animals," he said.

Future efforts will aim not only at developing monomeric proteins with new colors, said Tsien, but also working on those with more complicated properties, such as the ability to change color under different conditions. His ultimate goal, he said, is to broaden the range of tools that biologists have at their disposal to track genetically altered proteins and cells.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>