Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells don festive holiday colors

23.12.2004


The latest holiday gifts being offered to the scientific community this season by scientists in the laboratory of Howard Hughes Medical Institute investigator Roger Y. Tsien come in a dazzling variety of hues -- cherry, strawberry, tangerine, tomato, orange, banana and honeydew. The color spectrum would make Pantone proud.



No, Tsien’s group is not giving out fruit baskets; the names describe vibrant new varieties of fluorescent protein that the researchers have created to tag cells and observe a range of cellular processes. By splicing the genes for the fluorescent proteins into specific genes in the cell, researchers can detect when those genes are switched on to produce proteins. They can then use the telltale fluorescent colors to separate the cells visually. The availability of the new colors will enable scientists to track the effects of multiple genetic alterations in a single cell.

Tsien and his colleagues at the University of California, San Diego, published a research article describing the new fluorescent proteins in the December 2004 issue of the journal Nature Biotechnology. Lead author on the paper was HHMI predoctoral fellow Nathan C. Shaner in Tsien’s laboratory. In separate studies, Tsien’s team "borrowed" the immune system’s machinery for generating antibody diversity and used it to evolve a new red fluorescent protein.


In addition to offering fluorescent proteins in a range of distinctive colors, Tsien’s group has improved their design, creating proteins that are "monomers" that consist of only single protein units. Fluorescent proteins found in nature with yellow to red colors are invariably four-unit agglomerations that are often toxic or disruptive when fused to proteins that scientists hope to track. "The analogy is that if you have a detective who is supposed to be tracking suspects, and that detective has to go around in groups of four and track four suspects at once, the suspects are likely to know something is up," said Tsien.

The latest collection of fluorescent proteins builds on the researchers’ earlier success in reengineering a four-unit fluorescent protein isolated from a coral-like creature of the species Discosoma. From that multimeric protein, the researchers engineered a monomeric protein, called mRFP1, which still retained fluorescent properties. However, certain of these properties were still not optimal for a fluorescent marker.

Shaner, Tsien and their colleagues set out to improve mRFP1’s fluorescent properties -- making strategic mutations in the gene for the protein -- to render it more useful as a biological marker. "Basically, we were trying to guess from the crystal structure of the protein or from past knowledge of mutations, where we might make useful mutations," said Tsien. "In the process of trying to fix these characteristics, we also discovered more colors," he said. Further adjustments to the genes pushed the fluorescence of some of the proteins to longer wavelengths, filling in gaps in the spectrum of colors, said Tsien.

In the Nature Biotechnology article, the researchers also reported a demonstration of the improved functionality of the new proteins. They fused the protein mCherry (the "m" stands for monomeric) to proteins that were part of the cell’s microtubule transport system, and of the cell’s structural cytoskeleton. In both cases, mCherry successfully labeled the cellular structures. However, in the case of the microtubule protein, mRFP1 did not label it properly.

The researchers also created a red protein "tdTomato" in which two subunits still stick to each other, but they have been permanently joined head to tail. The resulting monolithic unit has no tendency to aggregate further, yet it fluoresces more brightly and resists fading better than true monomers. But in some cellular applications their larger molecular weight might interfere with cellular processes, said Tsien. And Tsien’s team has engineered other fluorescent proteins that may be more or less sensitive to changes in acidity.

Tsien said such a variety of fluorescent proteins will enable scientists to have considerable choices in making such tradeoffs, "and one of the reasons we name the proteins after fruits is to remind people that there is no ’best fruit’ in the grocery store," he said.

According to Tsien, the new assortment of fluorescent proteins will give researchers an easier way to track the effects of multiple genetic alterations in the same cells. "They can be applied to single cells, where you want to track different proteins, to different organelles, all the way up to whole animals," he said.

Future efforts will aim not only at developing monomeric proteins with new colors, said Tsien, but also working on those with more complicated properties, such as the ability to change color under different conditions. His ultimate goal, he said, is to broaden the range of tools that biologists have at their disposal to track genetically altered proteins and cells.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>