Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosome 16 publication fulfills DOE’s human genome commitment

23.12.2004


The U.S. Department of Energy Joint Genome Institute (JGI), culminating a 16-year effort, has completed its share of the Human Genome Project with the publication of the DNA sequence and analysis of chromosome 16 in the Dec. 23 issue of Nature.

"The Department of Energy is very proud of its historic role in the sequencing of the human genome--and very excited by the advances our pioneering discovery-class science now is making possible in the fields of both medicine and energy," said Secretary of Energy Spencer Abraham. "DOE launched the human genome program and developed the DNA sequencing and computational technologies that made possible the unraveling of the human genetic code. Now we are using these skills and resources as a powerful tool for clean energy and a cleaner environment."

U.S. Sen. Pete Domenici (R-NM), a leading congressional proponent of efforts to sequence the human genome, was the catalyst for freeing up the first significant federal genomics investment. "DOE has risen to the challenge and fulfilled the promise made to the public. Their work has led to the identification of signatures embedded in the DNA sequence that control the intricate functions conducted by the trillions of cells in our bodies.



"The considerable resources that DOE has assembled to tackle the human genome are now being dedicated to illuminating the genomes of organisms that may figure into biological solutions to such challenges as economical hydrogen production, carbon sequestration, and environmental clean-up," Domenici said.

Three Chromosomes Completed

JGI is the first of the five primary Human Genome Project sequencing sites, known as the "G5," to publish scientific articles describing each of the human chromosomes that they originally committed to sequence. DOE’s commitment entailed chromosomes 5, 16, and 19, all sequenced by JGI, representing 11 percent of the human genome.

The Nature paper delves into the 78.8 million bases, or letters of DNA code, on Chromosome16, home to 880 genes including those implicated in the development of breast and prostate cancer, Crohn’s disease and adult polycystic kidney disease. With the advancements accrued over the last five years at the JGI Production Genomics Facility, sequence is now being produced at a rate of 2.5 billion bases per month--or the equivalent of a human genome in just five weeks.

JGI researchers characterized the many regions on chromosome 16 that have been copied to other places within the chromosome, and even to the other chromosomes, a phenomenon known as segmental duplication. They compared these human sequences to regions conserved over time in other vertebrate genomes, including chimpanzee, dog, mouse, rat, chicken and pufferfish to shed light on changes that have occurred since the last common ancestor, ranging from five million to 400 million years ago.

The effort to complete the sequence of chromosome 16 was led by JGI researchers Joel Martin and Len Pennacchio and included over 100 researchers from the partnership of Los Alamos, Lawrence Berkeley and Lawrence Livermore national laboratories, as well as the Stanford Human Genome Center, the Department of Genome Science of the University of Washington, and Children’s Hospital in Oakland, CA. In addition to the research article in Nature, a large color poster highlighting biologically important elements of all three chromosomes sequenced by JGI along with DOE’s other contributions to genomics is featured in the publication.

"The success of the Human Genome Project was enabled by the selfless dedication and creativity of thousands of scientists around the world," said Aristides Patrinos, Associate Director of Science for Biological and Environmental Research, who has led the DOE genomics effort since 1995. "It has been an honor and a thrill to the DOE team to have played such a pivotal role in the launching and successful completion of this most noble of human undertakings."

Chromosome 16 was the original focus of DNA repair gene studies initiated at DOE’s Los Alamos National Laboratory in 1988. Additional interest stemmed from the discovery of genes on chromosome 16 implicated in the detoxification and transport of heavy metals.

Genome Effort Began in 1987

The Department of Energy and its predecessor agencies for decades have sponsored genomics research, including basic studies of DNA replication, damage, and repair, and the consequences of radiation-induced heritable mutations. In 1987, recognizing its pioneering contributions to discovery class science, a federal report recommended DOE assume a leadership role in an expansive multidisciplinary undertaking to map and sequence the human genome. Thus, between 1988 and 1989, three genome research centers were established at Lawrence Berkeley, Lawrence Livermore, and Los Alamos national laboratories. These were combined in 1997 into the DOE Joint Genome Institute (JGI).

With this genomics powerhouse now recognized, JGI continues to advance the frontiers of genome sciences through the advent of the Community Sequencing Program (CSP). The CSP will provide a world-class sequencing resource for the expanding diversity of disciplines--geology, oceanography, and ecology, among others--that can benefit from the application of genomics. Priority is given to sequencing organisms that are relevant to DOE missions.

"The Human Genome Project stands as the crown jewel and capstone of 20th century biology," said Charles DeLisi, Arthur G. B. Metcalf Professor of Science and Engineering at Boston University. "The Department of Energy’s role as the project’s prime mover, and its continued leadership throughout the course of the project, reminds us of the enormous wealth of talent in the DOE national laboratory system--talent that, in the case of the HGP, has served not just the nation, but all the peoples of the world."

From 1985 to 1987, DeLisi led the effort to launch the Human Genome Project, galvanizing an international team of researchers to collect the necessary resources, develop groundbreaking technologies, and propel the nation in an epic quest to map and sequence the human genome.

David Gilbert | EurekAlert!
Further information:
http://www.lbl.gov
http://www.jgi.doe.gov/CSP/index.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>