Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking cell suicide switch fails to stop prion damage in mouse brains

22.12.2004


Researchers knew that prions, the misfolded proteins that cause mad cow disease and other brain disorders, were killing off a class of important brain cells in a transgenic mouse model. But when they found a way to rescue those cells, they were astonished to discover the mice still became sick.

Now they believe previous efforts to find the beginnings of the mouse disorder may have been focused on the wrong part of the brain cell and are plotting new directions for research.

In a study that appears in the Jan. 1 issue of the Proceedings of the National Academy of Sciences, scientists report evidence that clinical symptoms in the mice are produced by damage to synapses, the areas where nerve cell branches come together for communication. "This could have important therapeutic implications," says senior author David Harris, M.D, Ph.D, professor of cell biology and physiology at Washington University School of Medicine in St. Louis. "There’s a great deal of effort being put into developing treatments for neurodegenerative disorders that would inhibit neuron death. Our results suggest that if we just prevent cell death without doing something to maintain the functionality of the synapse, patients may still get sick."



Harris notes that the findings also link prion diseases, which are relatively rare, to more common neurodegenerative disorders like Alzheimer’s disease, where recent evidence has also elevated the importance of damage to synapses.

Because of the bizarre methods by which prions spread and cause disease, they have only recently gained widespread acceptance as the source of several disorders that rapidly devastate the brains of humans, cows, deer and sheep.

In these disorders, the most infamous of which is mad cow disease, copies of a normal brain protein, PrP, fold themselves into abnormal shapes, dramatically altering the proteins’ properties. Genetic mutations can increase chances that copies of the PrP protein will misfold into the prion form. Proximity to prions also can increase the chances that normally folded copies of PrP will misfold and become prions.

Human prion disorders can be caused by inherited mutations, through contamination during a medical procedure or, in very rare instances, from consumption of infected animals. In addition, some "spontaneous" cases of human prion disease currently can’t be tracked to any genetic or environmental cause. Human prion disorders have no treatment and are fatal in months to several years.

Harris has created nearly 50 genetically modified lines of mice to study prion diseases. The mouse model that he and his colleagues used for the most recent study has a mutation in PrP that causes it to misfold, leading to difficulty in movement and other symptoms similar to those seen in human prion diseases.

Scientists previously found that the mouse mutation kills off a class of brain cells known as cerebellar granule neurons. They form an important part of the structure of the cerebellum, an area in the back of the brain involved in motor coordination and other functions. "The die-off is very dramatic - it’s massive and occurs at roughly the same time among all the granule neurons, and it leads to visible shrinkage of the cerebellum," Harris says. "That had us thinking these cellular deaths had to be related to the onset of symptoms."

To further understand what was happening, Harris began to look into proteins involved in a cellular suicide process called apoptosis. He became interested in a protein called Bax that other scientists had previously identified as a trigger of apoptosis in central nervous system cells.

Harris and his colleagues crossbred the mouse prion model with a line of mice where the Bax gene had been deleted. As they expected, cerebellar granule neurons survived in mice that both had the prion mutation and lacked the Bax gene. "That’s important by itself, because it tells us that Bax is involved in the cell death pathway," Harris notes. "There are other options for self-destruction that the cells could have been using, but now we know that the Bax pathway is the one to focus on."

Although the neurons survived, the clinical symptoms persisted. Microscopic examinations of the brains of mice from the original prion model had previously revealed clumps of prion protein in brain areas heavy with synapses, so researchers decided to look at the health of synapses in the new crossbred line of mice.

A test for synaptophysin, a protein found at synapses, revealed widespread loss of synapses in the new line of mice. "The neurons were still alive, but their connections were damaged or missing," Harris says. "This discovery really has changed the way we think about future directions for our work."

According to Harris, future research will include studies of how prions damage the synapse and whether the clumps of prion protein are involved in that damage.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity
28.06.2017 | Technische Universität München

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>