Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the Mechanism of Rett Syndrome

21.12.2004


How the First Identified Epigenetic Disease Turns on the Genes That Produce its Symptoms

Sometime between the age of 6 and 18 months, after a period of seemingly normal development, girls affected with Rett Syndrome lose interest in play; they gradually become withdrawn and anxious, develop autistic-like behaviors, and acquire specific symptoms like repetitive teeth-grinding and hand-wringing. This devastating neurological disease affects one in 15,000 female children.

Just five years ago, Rett Syndrome was tracked to mutations in a gene on the X chromosome, MECP2 . But how this gene, not previously associated with the brain or nervous system, could cause a neurological developmental disorder remained a puzzle.



Now, a team of scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory has developed new methods and overturned mistaken assumptions to discover how the product of this gene, the protein MeCP2, can remodel chromatin, the material that makes up chromosomes. For the first time a human disease — Rett Syndrome, the first identified epigenetic disease — has been linked to specific defects in the three-dimensional folding of chromatin.

The research was supervised by Terumi Kohwi-Shigematsu, a biochemist with Berkeley Lab’s Life Sciences Division; it reveals how mutated MeCP2 protein represses genes, and identifies some of the most important of those genes. Kohwi-Shigematsu and her colleagues, Shin-ichi Horike, Shutao Cai, Masaru Miyano, and Jan-Fang Chen, report their results in advanced online publication of the January issue of Nature Genetics.

How MECP2 works

So-called CpG "islands" are found at the promoter regions of many housekeeping genes, which code for proteins essential to cell function. They contain high densities of cytosine and guanine base pairs, called CpG dinucleotides. MECP2 stands for "methyl CpG-binding protein 2;" as its name indicates, it can bind to these base pairs when methyl groups (CH3) are attached to them.

Normally, CpG dinucleotides in CpG islands are not methylated and the genes are active. If CpG islands are methylated, however, they attract MeCP2 proteins, which bind additional proteins that repress gene transcription and turn the promoter off. Thus MeC2P is thought to be a key player in assembling the protein factors that silence transcription. Because MeCP2 binds to methylated CpG dinucleotides, its effects are not dependent on the primary sequence of DNA.

"One proposal for how defective or absent MeCP2 protein might cause Rett Syndrome was that, by failing to attach to methylated CpG dinucleotides, it would fail to repress inappropriate gene expression in the brain," says Kohwi-Shigematsu.

For some genes, called imprinted genes, their expression status depends on whether the gene came from the maternal or paternal allele, with the two forms often having differently methylated CpG islands at or near their promoters. A leading hypothesis of how mutated MECP2 could produce Rett Syndrome is that the mutation disrupts this imprinting mechanism.

An imprinted gene, one with a methylated promoter, is usually silent. If defective or missing MeCP2 protein were to fail to silence an imprinted allele, the expression of the gene would double. Failure to repress imprinted alleles has been implicated in several neurological disorders.

"MeCP2, the protein coded for by the MECP2 gene, is expressed in many tissues, including brains," says Kohwi-Shigematsu. "People thought it was a general repressor that regulates gene expression throughout the body. Yet the main syndrome of Rett patients pointed to neurodevelopmental problems after birth. So our first challenge was to find out which genes MeCP2 directly regulates in the brain, and how it regulates them."

Searching for targets

The researchers examined hundreds of MeCP2 binding sequences in the brains of mice. In wild-type mouse brains they found that the MeCP2 protein binds in the vicinity of some five dozen genes, several of which reside in a cluster of imprinted genes on mouse chromosome 6 (corresponding to a region of human chromosome 7).

When the binding sites in wild-type mouse brains were compared to the same sites in MeCP2-null mice — "knockout" mice bred with no MecP2 gene and thus no MeCP2 protein — one region in particular stood out: expression of the adjacent genes Dlx5 and Dlx6 almost doubled in the knockout mice. The identification of the Dlx5 gene in mice was highly suggestive, since in humans the DLX5 protein plays an important role in the synthesis of GABA, gamma-aminobutyric acid, an important neurotransmitter.

The researchers sought similar effects in cells from Rett Syndrome patients, substituting cultured lymphoblasts (immune-system cells) for inaccessible brain cells. In humans, normally only the maternal allele of DLX5 expresses, because the paternal allele is imprinted. But lymphoblasts from many Rett Syndrome patients exhibited a much higher rate of DLX5 expression. When an imprinted gene nevertheless continues to express, the phenomenon is called "loss of imprinting."

The researchers had now identified at least one gene targeted by MeCP2 where, if the protein were missing or defective, the result might lead to misregulation in the production of the neurotransmitter GABA. But the mechanism by which normal MeCP2 acts to regulate the DLX5 gene and how this regulation goes awry were still to be determined.

One thing was clear: MeCP2’s propensity to bind to methylated CpG islands played no part. CpG islands near Dlx5 and Dlx6 were found — quite unexpectedly — to be completely unmethylated in wild-type mice, knockout mice, and the human lymphoblast cell line. Even where individual CpG base pairs in the region outside CpG islands were methylated, there were no differences in methylation patterns between the maternal and paternal alleles.

Into the third dimension

Methylation in CpG dinucleotides was clearly insufficient to explain how MeCP2 normally regulates the DLX5 gene. The researchers pursued other possibilities.

To do the actual work of gene suppression, MeCP2 acts in concert with a histone deacetylase protein, HDAC1, and other proteins. Histones are proteins in chromatin equipped with little "tails" that, when attached to an acetyl group (CH3OH), relax to allow the chromatin structure to become open or less compacted. When acetyl groups are not present, the deacetylated chromatin condenses.

Genes are not expressed in silent chromatin because their DNA is tightly constrained by deacetylated histones, which prevent transcription enzymes from accessing the gene. Kohwi-Shigematsu and her team found a discrete deacetylated region of chromatin in the Dlx5/Dlx6 gene neighborhood that coincided with the main MeCP2 binding site.

In MeCP2-knockout mouse brain, this silent chromatin was missing. Kohwi-Shigematsu and her colleagues decided to investigate what effect MeCP2 might have on the structure of chromatin near this site in three dimensions. To this end, they created a complex new assay, the chromatin immunoprecipitation-combined loop assay, and used it to uncover a remarkable arrangement of chromatin loops in the Dlx5/Dlx6 neighborhood.

In wild-type mice, they found that MeCP2 is required for the formation of a loop of silent chromatin between the Dlx5 and Dlx6 genes, by bringing together two sequences separated by more than 10,000 base pairs. This silent chromatin loop configuration could not be formed in MeCP2-null brain, and in MeCP2-null mice, the two genes are highly expressed.

Mechanisms of Rett Syndrome

Rett Syndrome symptoms can be associated with the failure of mutated MECP2 to regulate transcription of a specific gene, DLX5, one allele of which is normally imprinted. Without the MeCP2 protein, production of the Dlx5 protein is increased, which must influence production of the neurotransmitter GABA and may also affect the expression of other, related genes in the DLX family with consequences for the development of the brain.

Absent or defective MeCP2 allows increased expression of the DLX5 gene through the loss of a loop of silent chromatin, and the activation of additional neighboring chromatin. This dramatic rearrangement in the DLX5/6 gene neighborhood may also involve other disturbances in gene expression. Similar rearrangements, with equally profound effects, may be found among the five dozen other genes targeted in the brain by MeCP2, which are now under active investigation by Kohwi-Shigematsu and her colleagues.

"Loss of silent chromatin looping and impaired imprinting of DLX5 in Rett syndrome," by Shin-ichi Horike, Shutao Cai, Masaru Miyano, Jan-Fang Chen, and Terumi Kohwi-Shigematsu, appears in advance online publication of the January issue of Nature Genetics.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at http://www.lbl.gov.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov/Science-Articles/Archive/LSD-Rett-syndrome.html
http://www.lbl.gov

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>