Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkeys’ calls – the beginnings of human language?

17.12.2004


Rhesus macaques communicate between themselves using a complex series of sounds that can signify things as distinct as the presence of danger, particular social relationships, emotions or food alerts. Now scientists in the latest issue of Proceedings of the National Academy of Sciences of the United States of America, while analyzing the brain areas activated during the recognition of these sounds, found that not only do monkeys seem to interpret these sounds using abstract representations like humans but they also use analogue neural networks, a discovery that can help to understand the origins of language in humans.



Ricardo Gil-da-Costa, Alex Martin and colleagues at the National Institutes of Health and the Harvard University in USA and at the Gulbenkian Science Institute in Portugal used positron emission tomography, a technique which allows the measurement of the functioning of distinct areas of the human brain with the individual conscious and alert, to study in Rhesus monkeys the brain’s response to the sounds used for communication within the species.

They were particularly interested in understanding how the monkeys processed the information transmitted by these sounds and the relationship with the mechanisms for human’s conceptual representation. The team of scientists used calls known to be associated with pleasant feelings, such as food recognition and friendly approach, or unpleasant emotions, such as fear, and analysed which areas of the brain were activated in each circumstance. As controls, non-biological sounds such as those produced by musical instruments were used.


Very interestingly, Gil-da-Costa, Martin and colleagues found that when listening to other monkeys’ calls, not only the sound-processing parts of the macaque brain were activated but also those areas associated with visual and affective/emotional-processing. This did not happen when the animals listened to non-biological noises, in which case only the parts of the brain associated with the processing of sounds were activated.

The stimulation of regions used to store visual information suggested to the scientists that the monkeys retrieve visual data to “read” the system of sounds used in the communication between members of the same species, just like in human where these areas are stimulated when listening to words with meaning. Furthermore, when “unpleasant” calls were played the monkeys exhibited activation of zones in the brain usually associated, both in humans and macaques, with the recall of emotional memories and the regulation of affective responses.

Gil-da-Costa, Martin and colleagues’ results are very interesting as they show that calls by other monkeys of the same species, sounds which the animals understand, lead to the activation in macaques’ brain of areas specifically associated with the visual memories of objects and their affective properties, exactly as listening to meaningful language activates the same areas in humans. Both phenomena represent examples of conceptual representation, in this case of sounds. This suggests a similar system of processing information in both humans and non-human primates, which lead to the proposal by Gil-da-Costa, Martin and colleagues, of a common pattern of evolution where the system described in this paper could have served partially as basis for the subsequent development of language in humans.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/101/50/17516?view=abstract
http://www.oct.mct.pt

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>