Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fewer calories may slow Alzheimer’s

16.12.2004


A restrictive diet in mice reduces the build-up of a substance linked to memory loss. But can the findngs be applied to humans?



Restricting the diets of mice reduces the build-up of plaques in the brain that are linked to Alzheimer’s disease, according to a USC study. With obese people generally considered to be at a higher risk for developing Alzheimer’s, the research raises questions about whether the findings are potentially applicable to humans. "This is the first indication that modest changes in the normal diet can slow some aspects of Alzheimer’s disease," said Caleb Finch, co-author of the study published in the online version of the journal Neurobiology of Aging. "But that is far and away yet to be proven for humans. It’s a big jump to say that what’s true for a mouse in a cage is relevant to people living in our complex world," Finch said.

In the study, conducted with collaborators at the University of South Florida in Tampa, researchers used mice whose DNA had been altered with human genes from two families with early onset hereditary Alzheimer’s. The mice were then split into two groups as young adults: one that could eat all it desired ("ad libitum") and the other that had its food intake reduced by 40 percent over a four-week period (diet- restricted).


The researchers were looking specifically at the formation of plaques caused by a build-up of the fiber-like substance called beta-amyloid. Made up of proteins and polysaccharides, amyloid plaques are deposited in the brain during Alzheimer’s disease. Specifically, plaques accumulate in the hippocampus and frontal cortex of Alzheimer’s sufferers - areas responsible for memory.

In the diet-restricted mice, both the amount and size of plaque was about 50 percent less than in mice that ate as much as they wanted. "The power of this study is that two different sets of [human] family mutations were equally sensitive to the effect of diet and slowing the Alzheimer’s-like change," said Finch, holder of the ARCO-William F. Kieschnick Chair in the Neurobiology of Aging at USC.

The next goal is to find out why diet restriction has such profound and rapid effects, Finch said. "We are going to look into the details of metabolism to try and isolate which of the consequences of diet restriction is at work," Finch said. "Is it the blood glucose? Is it the lowered insulin? Those are two targets."

The other USC researchers on this study were Nilay V. Patel, a former USC postdoc who is now a staff scientist at City of Hope Medical Center, and Todd E. Morgan, a research assistant professor in the Andrus Gerontology Center at USC.

The researchers at the University of Southern Florida are Marcia Gordon, Karen E. Connor, Robert A. Good, Robert W. Engelman, Jerimiah Mason and David G. Morgan.

Usha Sutliff | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>