Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fewer calories may slow Alzheimer’s


A restrictive diet in mice reduces the build-up of a substance linked to memory loss. But can the findngs be applied to humans?

Restricting the diets of mice reduces the build-up of plaques in the brain that are linked to Alzheimer’s disease, according to a USC study. With obese people generally considered to be at a higher risk for developing Alzheimer’s, the research raises questions about whether the findings are potentially applicable to humans. "This is the first indication that modest changes in the normal diet can slow some aspects of Alzheimer’s disease," said Caleb Finch, co-author of the study published in the online version of the journal Neurobiology of Aging. "But that is far and away yet to be proven for humans. It’s a big jump to say that what’s true for a mouse in a cage is relevant to people living in our complex world," Finch said.

In the study, conducted with collaborators at the University of South Florida in Tampa, researchers used mice whose DNA had been altered with human genes from two families with early onset hereditary Alzheimer’s. The mice were then split into two groups as young adults: one that could eat all it desired ("ad libitum") and the other that had its food intake reduced by 40 percent over a four-week period (diet- restricted).

The researchers were looking specifically at the formation of plaques caused by a build-up of the fiber-like substance called beta-amyloid. Made up of proteins and polysaccharides, amyloid plaques are deposited in the brain during Alzheimer’s disease. Specifically, plaques accumulate in the hippocampus and frontal cortex of Alzheimer’s sufferers - areas responsible for memory.

In the diet-restricted mice, both the amount and size of plaque was about 50 percent less than in mice that ate as much as they wanted. "The power of this study is that two different sets of [human] family mutations were equally sensitive to the effect of diet and slowing the Alzheimer’s-like change," said Finch, holder of the ARCO-William F. Kieschnick Chair in the Neurobiology of Aging at USC.

The next goal is to find out why diet restriction has such profound and rapid effects, Finch said. "We are going to look into the details of metabolism to try and isolate which of the consequences of diet restriction is at work," Finch said. "Is it the blood glucose? Is it the lowered insulin? Those are two targets."

The other USC researchers on this study were Nilay V. Patel, a former USC postdoc who is now a staff scientist at City of Hope Medical Center, and Todd E. Morgan, a research assistant professor in the Andrus Gerontology Center at USC.

The researchers at the University of Southern Florida are Marcia Gordon, Karen E. Connor, Robert A. Good, Robert W. Engelman, Jerimiah Mason and David G. Morgan.

Usha Sutliff | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>