Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team engineers cell-deforming technique to help understand malaria

15.12.2004


Subra Suresh has spent the last two decades studying the mechanical properties of engineered materials from the atomic to the structural scale. So, until recently, the head of MIT’s Department of Materials Science and Engineering never thought he’d be a player in the hunt for cures to malaria and pancreatic cancer.



It turns out, however, that Suresh’s expertise in nanotechnology is quite applicable to biology and medicine. With colleagues in engineering, science and medicine at MIT, the National University of Singapore (NUS) and the universities of Heidelberg and Ulm in Germany, he has adapted state-of-the-art tools for the study of the mechanical properties of materials to the study of living cells.

Now, in the January 2005 issue of Acta Biomaterialia, the researchers report the most complete and quantitative characterization yet of how a healthy human blood cell changes its shape, or deforms, upon being invaded by the malaria-inducing parasite Plasmodium falciparum. In the same article, the researchers show how the deformation of human pancreatic cancer cells in response to certain naturally occurring biomolecules may affect the metastasis of that disease. Ultimately, the work could lead to better treatments for these and other diseases.


Suresh’s coauthors are graduate student John P. Mills and research scientist Ming Dao of MIT’s Department of Materials Science and Engineering, Professor Joachim Spatz and Alexandre Micoulet of the University of Heidelberg, Professor C. T. Lim of NUS, and Professor Thomas Seufferlein and Mark Beil of the University of Ulm.

Malaria and the cell

Healthy red blood cells regularly contort from circular disks to slender "bullets" to move through the tiniest blood vessels. Parasite-infected cells can lose their ability to do so because of reduced deformability and because they tend to stick more easily to one another and to blood vessel walls.

"It has been a great challenge to directly measure the cells’ changing mechanical properties continuously as the parasite matures inside the cell," said Suresh, the Ford Professor of Engineering, who also holds appointments in MIT’s Department of Mechanical Engineering and Biological Engineering Division.

In the Acta Biomaterialia paper, the researchers report doing just that. "We provide the first quantitative force versus displacement results on how the deformability of the red blood cell changes progressively in response to the full development of the P. falciparum parasite inside the cell," Suresh said.

"Such information at the molecular level is vital to gain insights into the pathogenesis of malaria, and potentially offers the opportunity to develop better drugs," Suresh added. Precise measurements of infected cells’ response to mechanical forces could also help doctors understand how different strains of the parasite influence the functioning of organs such as the spleen.

Optical tweezers

Key to the work is a known tool: optical tweezers. With this tool, silica spheres or beads are attached to opposite sides of a red blood cell, and a laser beam is aimed at one bead. Under the right conditions, the laser "traps" the bead, so that the trapped bead can be pulled, stretching or deforming the cell.

While others have also used optical tweezers to study the deformation of cells, the forces they’ve been able to apply are far less than those needed to induce the deformation that cells would experience in the body. The forces obtained by the MIT-led researchers are several times larger, and their technique offers considerably greater flexibility to mechanically manipulate cells than other methods. "This really gives a level of strain for the red blood cell that is similar to what that cell experiences as it moves through tiny blood vessels," said Suresh.

"We then extract the properties of a healthy red blood cell and a parasite-invaded cell from a combination of experiments and 3D computer modeling at the full-cell and molecular levels," he continued. His team, along with NUS microbiologist Kevin Tan and NUS graduate student Qie Lan, is also collaborating with the Institut Pasteur in Paris to explore how specific proteins transported from the surface of parasite to the cell contribute to changes in cell mechanical properties and stickiness.

Malaria kills some two to three million people every year. "I’m hopeful that this work will provide a deeper scientific understanding of how malaria affects cells by bringing cutting-edge engineering methodology to study medical problems," Suresh said.

The work is supported by NUS, the Alexander von Humboldt Foundation in Germany, the German Science Foundation, the Interdisciplinary Center for Clinical Research at the University of Ulm, and the Association for International Cancer Research.

Elizabeth Thomson, | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>