Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes tied to abnormal immune response in mice with lupus

15.12.2004


Scientists have uncovered a link between a family of genes and abnormalities of the immune system that are associated with systemic lupus erythematosus (SLE), a devastating disease that affects over 1 million Americans. The research, published in the December issue of Immunity, significantly advances the understanding of the pathology of lupus-like autoimmunity in mice and may facilitate the design of future therapies for lupus in humans.



A normal immune system protects the body against viruses, bacteria and other potentially harmful foreign invaders. In an autoimmune disease, like SLE, the immune system loses its ability to tell the difference between foreign substances that pose a threat and the cells of the body. In SLE, the immune system attacks and damages the body’s own tissues and organs, including the joints, kidneys, heart, lungs, brain, blood and skin. Dr. Edward K. Wakeland from the University of Texas Southwestern Medical Center and colleagues used a lupus-prone mouse model of SLE to characterize genes directly involved with SLE susceptibility.

The researchers report that variations in the structure and expression of a subset of genes belonging to the SLAM/CD2 family may contribute to autoimmunity in mice with lupus. Scientists have known for some time that SLAM/CD2 genes play a critical role in controlling immune cells and responses. Evidence presented here suggests that the altered SLAM/CD2 members may be responsible for abnormal lymphocyte responses. The Ly108 gene, which is expressed at elevated levels in lymphocytes from lupus susceptible mice, has emerged as a likely contributor to abnormal immune activation. However, Ly108 and other SLAM/CD2 genes are thought to act in combination with additional genes and signaling molecules in these mice and further research is needed to identify the specific interactions that lead to an overzealous immune response.


The researchers conclude that sequence and expression level differences in a subset of SLAM/CD2 genes are associated with the autoimmune response observed in SLE mice. "Given our association of variations in the SLAM/CD2 cluster with lupus susceptibility in mice, further work on the relationship of polymorphisms in the SLAM/CD2 cluster to SLE in humans is clearly warranted," says Dr. Wakeland.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>