Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes tied to abnormal immune response in mice with lupus

15.12.2004


Scientists have uncovered a link between a family of genes and abnormalities of the immune system that are associated with systemic lupus erythematosus (SLE), a devastating disease that affects over 1 million Americans. The research, published in the December issue of Immunity, significantly advances the understanding of the pathology of lupus-like autoimmunity in mice and may facilitate the design of future therapies for lupus in humans.



A normal immune system protects the body against viruses, bacteria and other potentially harmful foreign invaders. In an autoimmune disease, like SLE, the immune system loses its ability to tell the difference between foreign substances that pose a threat and the cells of the body. In SLE, the immune system attacks and damages the body’s own tissues and organs, including the joints, kidneys, heart, lungs, brain, blood and skin. Dr. Edward K. Wakeland from the University of Texas Southwestern Medical Center and colleagues used a lupus-prone mouse model of SLE to characterize genes directly involved with SLE susceptibility.

The researchers report that variations in the structure and expression of a subset of genes belonging to the SLAM/CD2 family may contribute to autoimmunity in mice with lupus. Scientists have known for some time that SLAM/CD2 genes play a critical role in controlling immune cells and responses. Evidence presented here suggests that the altered SLAM/CD2 members may be responsible for abnormal lymphocyte responses. The Ly108 gene, which is expressed at elevated levels in lymphocytes from lupus susceptible mice, has emerged as a likely contributor to abnormal immune activation. However, Ly108 and other SLAM/CD2 genes are thought to act in combination with additional genes and signaling molecules in these mice and further research is needed to identify the specific interactions that lead to an overzealous immune response.


The researchers conclude that sequence and expression level differences in a subset of SLAM/CD2 genes are associated with the autoimmune response observed in SLE mice. "Given our association of variations in the SLAM/CD2 cluster with lupus susceptibility in mice, further work on the relationship of polymorphisms in the SLAM/CD2 cluster to SLE in humans is clearly warranted," says Dr. Wakeland.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>