Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New antibiotic target could mean the end of pneumonia

10.12.2004


Scientists have found a “molecular Achilles heel” in the organism that causes pneumonia, providing a target for the development of a new class of antibiotics that could eventually eradicate the disease. Their report is scheduled to appear in the Dec. 28 edition of Biochemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.



“Streptococcus pneumoniae places an enormous burden on the welfare of humanity,” says Thomas Leyh, Ph.D., a professor of biochemistry at the Albert Einstein College of Medicine in New York and lead author of the paper. “Worldwide, the organism takes the lives of some 3,700 people daily, the majority of whom are children below the age of five.”

Decades of antibiotic use have produced drug-resistant strains of S. pneumoniae that are capable of evading even our so-called “last-line-of-defense” antibiotics, such as vancomycin. In the United States alone, the roughly 7 million annual cases of inner ear infections caused by this organism saddle the U.S. heath care system with an estimated $5 billion burden, Leyh says.


The virulence of S. pneumoniae requires a properly functioning channel called the isoprenoid biosynthetic pathway. Leyh and his colleagues have discovered that an intermediate in the pathway — diphosphomevalonate, or DPM — can inhibit the first enzyme, effectively shutting down the whole process. “If you switch this pathway off, the organism is in big trouble,” Leyh says. Without this channel, the normally pathogenic S. pneumoniae is unable to survive in mouse lungs and its virulence is severely attenuated.

“Remarkably, the human enzyme is not influenced by the inhibitor,” Leyh says. This means that S. pneumoniae in human lungs or blood should be inhibited without any negative effect on human metabolism.

DPM binds to its own “pocket” on the enzyme, and therefore cannot be dislodged by the enzyme’s natural substrates. Pharmaceutical companies consider such targets to be among the most important elements in deciding whether or not to pursue a problem, according to Leyh. “We recognize the need to work with a pharmaceutical partner to bring our basic research discovery to the bedside, and, hopefully, to cure this disease.”

The researchers plan to use DPM as a template for developing novel antibiotics to cure pneumonia and other streptococcal diseases, such as meningitis. “We consider DPM a very powerful lead compound,” Leyh continues. “It’s about as compelling as it can be at this stage.” Leyh’s lab is currently developing and testing five compounds based on the DPM template for their potential as new antibiotics.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio. — Jason Gorss

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>