Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cigarette Smoke A Culprit in Poor Healing and Increased Scarring

07.12.2004


UC Riverside Research Showing How Smoke Complicates Healing Process Selected by Cell Biology Society as Press-Worthy from More Than 1,200 Submissions



Cigarette smoke, whether first- or second-hand, complicates the careful cellular choreography of wound healing, according to a paper by University of California, Riverside researchers that was included in the 2004 Press Book of the 44th Annual Meeting of the American Society For Cell Biology (ASCB).

Cigarette smoke delays the formation of healing tissue and sets the stage for increased scarring at the edges of a wound according to the paper titled Smoke Gets In Your Wounds, one of 15 from a field of more than 1,200 submissions to the ASCB Annual Meeting Press Book.


UCR Professor of Cell Biology and Neuroscience Manuela Martins-Green will present her findings Sunday, Dec. 5, at the annual meeting, which is scheduled to begin Saturday, Dec. 4, in Washington D.C. and will run through Wednesday, Dec. 8.

The press book is the ASCB’s major effort to open cell biology research to a wider audience by helping science journalists discover the meeting’s most exciting and significant new work, according to an association statement.

Martins-Green, and student Lina Wong are part of a team of researchers who have published several papers on the subject. Similar findings were announced in the journals BMC Cell Biology in April and Wound Repair and Regeneration in August. Those papers also examined the role of fibroblasts, the cells that play a major role in wound healing.

Wound healing is a highly choreographed, biological drama of clotting, inflammation, cell proliferation and tissue remodeling. It features an exotic cast of clotting and growth factors, specialized cells and structural proteins, each of which must time their entrance and exit perfectly. Nothing messes up this timing like cigarette smoke. Clinical studies have consistently shown that individuals exposed to cigarette smoke – whether “first-” or “second-hand”– heal poorly and are more likely to develop scarring and associated diseases.

The negative effects of smoking on cells during the inflammatory phase of tissue repair are well documented. However the effects of cigarette smoke on the phase in which fibroblasts proliferate and migrate to create healing tissue, are less understood.

Using doses of cigarette smoke equivalent to “first-hand” and “second-hand” exposure in humans, Martins-Green and her colleagues focused on the structure and function of fibroblasts, both in mice and in human tissue culture.

Fibroblasts secrete many proteins that compose a matrix of connective tissue outside of the cells and are critical in orchestrating tissue repair and remodeling. Surprisingly, smoke, at levels found in tissues of smokers, did not kill the fibroblasts, but instead injured them in a way that allowed them to turn on certain genes that improved their survival. However, it was cell survival at the wrong time and in the wrong place, in terms of properly forming healing tissue.

During normal development of wound healing tissue, the fibroblasts at the site of the wound produce proteins that form a matrix into which fibroblasts and endothelial cells (which form linings of, among other things, blood and lymph vessels and the heart) migrate from outside the wounded tissue. These cells then knit the healing tissue together.

While smoke stimulates these cells to stay alive, it impairs their ability to move, causing them to bunch up at the margin of the wound, which promotes scarring. Both the mouse studies and human cell culture models of wound healing gave the same results, according to Martins-Green.

“Taken together, our results suggest that tobacco smoke may delay wound repair because of the inability of the fibroblasts to migrate into the wounded area, leading to an accumulation of these cells at the edge of the wound, thus preventing the formation of the healing tissue,” she said.

Martins-Green added that: “We’re now trying to isolate the component or components in smoke that inhibit cell migration.”

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>