Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cigarette Smoke A Culprit in Poor Healing and Increased Scarring

07.12.2004


UC Riverside Research Showing How Smoke Complicates Healing Process Selected by Cell Biology Society as Press-Worthy from More Than 1,200 Submissions



Cigarette smoke, whether first- or second-hand, complicates the careful cellular choreography of wound healing, according to a paper by University of California, Riverside researchers that was included in the 2004 Press Book of the 44th Annual Meeting of the American Society For Cell Biology (ASCB).

Cigarette smoke delays the formation of healing tissue and sets the stage for increased scarring at the edges of a wound according to the paper titled Smoke Gets In Your Wounds, one of 15 from a field of more than 1,200 submissions to the ASCB Annual Meeting Press Book.


UCR Professor of Cell Biology and Neuroscience Manuela Martins-Green will present her findings Sunday, Dec. 5, at the annual meeting, which is scheduled to begin Saturday, Dec. 4, in Washington D.C. and will run through Wednesday, Dec. 8.

The press book is the ASCB’s major effort to open cell biology research to a wider audience by helping science journalists discover the meeting’s most exciting and significant new work, according to an association statement.

Martins-Green, and student Lina Wong are part of a team of researchers who have published several papers on the subject. Similar findings were announced in the journals BMC Cell Biology in April and Wound Repair and Regeneration in August. Those papers also examined the role of fibroblasts, the cells that play a major role in wound healing.

Wound healing is a highly choreographed, biological drama of clotting, inflammation, cell proliferation and tissue remodeling. It features an exotic cast of clotting and growth factors, specialized cells and structural proteins, each of which must time their entrance and exit perfectly. Nothing messes up this timing like cigarette smoke. Clinical studies have consistently shown that individuals exposed to cigarette smoke – whether “first-” or “second-hand”– heal poorly and are more likely to develop scarring and associated diseases.

The negative effects of smoking on cells during the inflammatory phase of tissue repair are well documented. However the effects of cigarette smoke on the phase in which fibroblasts proliferate and migrate to create healing tissue, are less understood.

Using doses of cigarette smoke equivalent to “first-hand” and “second-hand” exposure in humans, Martins-Green and her colleagues focused on the structure and function of fibroblasts, both in mice and in human tissue culture.

Fibroblasts secrete many proteins that compose a matrix of connective tissue outside of the cells and are critical in orchestrating tissue repair and remodeling. Surprisingly, smoke, at levels found in tissues of smokers, did not kill the fibroblasts, but instead injured them in a way that allowed them to turn on certain genes that improved their survival. However, it was cell survival at the wrong time and in the wrong place, in terms of properly forming healing tissue.

During normal development of wound healing tissue, the fibroblasts at the site of the wound produce proteins that form a matrix into which fibroblasts and endothelial cells (which form linings of, among other things, blood and lymph vessels and the heart) migrate from outside the wounded tissue. These cells then knit the healing tissue together.

While smoke stimulates these cells to stay alive, it impairs their ability to move, causing them to bunch up at the margin of the wound, which promotes scarring. Both the mouse studies and human cell culture models of wound healing gave the same results, according to Martins-Green.

“Taken together, our results suggest that tobacco smoke may delay wound repair because of the inability of the fibroblasts to migrate into the wounded area, leading to an accumulation of these cells at the edge of the wound, thus preventing the formation of the healing tissue,” she said.

Martins-Green added that: “We’re now trying to isolate the component or components in smoke that inhibit cell migration.”

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>