Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cigarette Smoke A Culprit in Poor Healing and Increased Scarring

07.12.2004


UC Riverside Research Showing How Smoke Complicates Healing Process Selected by Cell Biology Society as Press-Worthy from More Than 1,200 Submissions



Cigarette smoke, whether first- or second-hand, complicates the careful cellular choreography of wound healing, according to a paper by University of California, Riverside researchers that was included in the 2004 Press Book of the 44th Annual Meeting of the American Society For Cell Biology (ASCB).

Cigarette smoke delays the formation of healing tissue and sets the stage for increased scarring at the edges of a wound according to the paper titled Smoke Gets In Your Wounds, one of 15 from a field of more than 1,200 submissions to the ASCB Annual Meeting Press Book.


UCR Professor of Cell Biology and Neuroscience Manuela Martins-Green will present her findings Sunday, Dec. 5, at the annual meeting, which is scheduled to begin Saturday, Dec. 4, in Washington D.C. and will run through Wednesday, Dec. 8.

The press book is the ASCB’s major effort to open cell biology research to a wider audience by helping science journalists discover the meeting’s most exciting and significant new work, according to an association statement.

Martins-Green, and student Lina Wong are part of a team of researchers who have published several papers on the subject. Similar findings were announced in the journals BMC Cell Biology in April and Wound Repair and Regeneration in August. Those papers also examined the role of fibroblasts, the cells that play a major role in wound healing.

Wound healing is a highly choreographed, biological drama of clotting, inflammation, cell proliferation and tissue remodeling. It features an exotic cast of clotting and growth factors, specialized cells and structural proteins, each of which must time their entrance and exit perfectly. Nothing messes up this timing like cigarette smoke. Clinical studies have consistently shown that individuals exposed to cigarette smoke – whether “first-” or “second-hand”– heal poorly and are more likely to develop scarring and associated diseases.

The negative effects of smoking on cells during the inflammatory phase of tissue repair are well documented. However the effects of cigarette smoke on the phase in which fibroblasts proliferate and migrate to create healing tissue, are less understood.

Using doses of cigarette smoke equivalent to “first-hand” and “second-hand” exposure in humans, Martins-Green and her colleagues focused on the structure and function of fibroblasts, both in mice and in human tissue culture.

Fibroblasts secrete many proteins that compose a matrix of connective tissue outside of the cells and are critical in orchestrating tissue repair and remodeling. Surprisingly, smoke, at levels found in tissues of smokers, did not kill the fibroblasts, but instead injured them in a way that allowed them to turn on certain genes that improved their survival. However, it was cell survival at the wrong time and in the wrong place, in terms of properly forming healing tissue.

During normal development of wound healing tissue, the fibroblasts at the site of the wound produce proteins that form a matrix into which fibroblasts and endothelial cells (which form linings of, among other things, blood and lymph vessels and the heart) migrate from outside the wounded tissue. These cells then knit the healing tissue together.

While smoke stimulates these cells to stay alive, it impairs their ability to move, causing them to bunch up at the margin of the wound, which promotes scarring. Both the mouse studies and human cell culture models of wound healing gave the same results, according to Martins-Green.

“Taken together, our results suggest that tobacco smoke may delay wound repair because of the inability of the fibroblasts to migrate into the wounded area, leading to an accumulation of these cells at the edge of the wound, thus preventing the formation of the healing tissue,” she said.

Martins-Green added that: “We’re now trying to isolate the component or components in smoke that inhibit cell migration.”

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>