Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Bacteria and a Nematode: Natural Born Pest Killers

06.12.2004


In a world where 842 million people suffer from chronic hunger, insect pests consume 20-30 percent of world food crops. Chemical pesticides are increasingly expensive, ineffective and environmentally aggressive, killing beneficial insects and, when transmitted through the food chain, moving in unwanted directions.



The search for eco-friendly bio-insecticides has focused mainly on developing transgenic crops that express natural protein toxins. The most successful, by far, are crops that express the toxin from the bacterium Bacillus thuringiensis (BT). However the widespread use of BT transgenics has raised new—and contradictory—concerns; farmers fear the rapid evolution of BT-resistant insects and some consumers fear the rapid marketing of transgenic foods.

In the search for alternatives, scientists are revisiting a ‘natural’ biological control strategy used by insecticidal bacteria that live symbiotically with “entomopathogenic” nematodes. That’s a mouthful to describe an insect-killing bacterium that lives inside an unaffected worm host. The classic example is the bacterium, Xenorhabdus nematophila (X. nematophila; Latin for “loves nematodes”) and nematodes of the genus, Steinernema. Bacterium-nematode teams live almost their entire lifecycle inside larval-stage insects. The Xenorhabdus-Steinernema (‘X-S’) team is being used successfully to combat Lepidoptera, Coleoptera and Diptera pests.


Puneet Khandelwal, working with Prof. Rakesh Bhatnagar at the Centre for Biotechnology, Jawaharlal Nehru University, and Dr. Nirupama Banerjee at the International Centre for Genetic Engineering in New Delhi wanted to know why the X-S team was so deadly effective against one of the world’s costliest pests, Helicoverpa armigera (a.k.a. the scarce bordered straw moth). This moth’s larvae eat Zea mays, which is corn to Americans, maize to Europeans, and sustenance to millions in the Third World.

Khandelwal and colleagues succeeded in identifying the insecticidal factor. The active component was found in a large complex normally associated with the bacterial outer membrane, and was also present in or on outer membrane vesicles (OMVs) released from the bacterial surface, says Khandelwal. They then searched through OMV components and identified a small (17 kDa) toxic protein. When purified, this protein was toxic to cultured larval cells and directly killed H. armigera larvae. Gene cloning and sequencing showed this protein is related to a class of bacterial outer membrane proteins that form protrusions, called pili or fimbriae, which often help bacteria attach to host cells during infection. Similar to pili proteins, the purified 17 kDa protein self-associated to form oligomers, each of which was connected to the next by a strand. Most importantly, the recombinant 17 kDa protein killed H. armigera larvae, demonstrating its potential as a biological control agent in a world desperately in need of new ideas.

Insecticidal activity associated with a 17 kDa pilin protein of Xenorhabdus nematophila, P. Khandelwal,1 R. Bhatnagar,1 N. Banerjee2 ; 1 Centre For Biotechnology, Jawaharlal Nehru University, New Delhi, India, 2 Insect resistance, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

At the meeting: Session 329, Structure & Function of Membrane Proteins II, Poster Presentation 1726, Halls D/E. Author presents: Tuesday, Dec. 7, 1:30— 3:00 PM.

| newswise
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>