Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Bacteria and a Nematode: Natural Born Pest Killers

06.12.2004


In a world where 842 million people suffer from chronic hunger, insect pests consume 20-30 percent of world food crops. Chemical pesticides are increasingly expensive, ineffective and environmentally aggressive, killing beneficial insects and, when transmitted through the food chain, moving in unwanted directions.



The search for eco-friendly bio-insecticides has focused mainly on developing transgenic crops that express natural protein toxins. The most successful, by far, are crops that express the toxin from the bacterium Bacillus thuringiensis (BT). However the widespread use of BT transgenics has raised new—and contradictory—concerns; farmers fear the rapid evolution of BT-resistant insects and some consumers fear the rapid marketing of transgenic foods.

In the search for alternatives, scientists are revisiting a ‘natural’ biological control strategy used by insecticidal bacteria that live symbiotically with “entomopathogenic” nematodes. That’s a mouthful to describe an insect-killing bacterium that lives inside an unaffected worm host. The classic example is the bacterium, Xenorhabdus nematophila (X. nematophila; Latin for “loves nematodes”) and nematodes of the genus, Steinernema. Bacterium-nematode teams live almost their entire lifecycle inside larval-stage insects. The Xenorhabdus-Steinernema (‘X-S’) team is being used successfully to combat Lepidoptera, Coleoptera and Diptera pests.


Puneet Khandelwal, working with Prof. Rakesh Bhatnagar at the Centre for Biotechnology, Jawaharlal Nehru University, and Dr. Nirupama Banerjee at the International Centre for Genetic Engineering in New Delhi wanted to know why the X-S team was so deadly effective against one of the world’s costliest pests, Helicoverpa armigera (a.k.a. the scarce bordered straw moth). This moth’s larvae eat Zea mays, which is corn to Americans, maize to Europeans, and sustenance to millions in the Third World.

Khandelwal and colleagues succeeded in identifying the insecticidal factor. The active component was found in a large complex normally associated with the bacterial outer membrane, and was also present in or on outer membrane vesicles (OMVs) released from the bacterial surface, says Khandelwal. They then searched through OMV components and identified a small (17 kDa) toxic protein. When purified, this protein was toxic to cultured larval cells and directly killed H. armigera larvae. Gene cloning and sequencing showed this protein is related to a class of bacterial outer membrane proteins that form protrusions, called pili or fimbriae, which often help bacteria attach to host cells during infection. Similar to pili proteins, the purified 17 kDa protein self-associated to form oligomers, each of which was connected to the next by a strand. Most importantly, the recombinant 17 kDa protein killed H. armigera larvae, demonstrating its potential as a biological control agent in a world desperately in need of new ideas.

Insecticidal activity associated with a 17 kDa pilin protein of Xenorhabdus nematophila, P. Khandelwal,1 R. Bhatnagar,1 N. Banerjee2 ; 1 Centre For Biotechnology, Jawaharlal Nehru University, New Delhi, India, 2 Insect resistance, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

At the meeting: Session 329, Structure & Function of Membrane Proteins II, Poster Presentation 1726, Halls D/E. Author presents: Tuesday, Dec. 7, 1:30— 3:00 PM.

| newswise
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>