Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Bacteria and a Nematode: Natural Born Pest Killers

06.12.2004


In a world where 842 million people suffer from chronic hunger, insect pests consume 20-30 percent of world food crops. Chemical pesticides are increasingly expensive, ineffective and environmentally aggressive, killing beneficial insects and, when transmitted through the food chain, moving in unwanted directions.



The search for eco-friendly bio-insecticides has focused mainly on developing transgenic crops that express natural protein toxins. The most successful, by far, are crops that express the toxin from the bacterium Bacillus thuringiensis (BT). However the widespread use of BT transgenics has raised new—and contradictory—concerns; farmers fear the rapid evolution of BT-resistant insects and some consumers fear the rapid marketing of transgenic foods.

In the search for alternatives, scientists are revisiting a ‘natural’ biological control strategy used by insecticidal bacteria that live symbiotically with “entomopathogenic” nematodes. That’s a mouthful to describe an insect-killing bacterium that lives inside an unaffected worm host. The classic example is the bacterium, Xenorhabdus nematophila (X. nematophila; Latin for “loves nematodes”) and nematodes of the genus, Steinernema. Bacterium-nematode teams live almost their entire lifecycle inside larval-stage insects. The Xenorhabdus-Steinernema (‘X-S’) team is being used successfully to combat Lepidoptera, Coleoptera and Diptera pests.


Puneet Khandelwal, working with Prof. Rakesh Bhatnagar at the Centre for Biotechnology, Jawaharlal Nehru University, and Dr. Nirupama Banerjee at the International Centre for Genetic Engineering in New Delhi wanted to know why the X-S team was so deadly effective against one of the world’s costliest pests, Helicoverpa armigera (a.k.a. the scarce bordered straw moth). This moth’s larvae eat Zea mays, which is corn to Americans, maize to Europeans, and sustenance to millions in the Third World.

Khandelwal and colleagues succeeded in identifying the insecticidal factor. The active component was found in a large complex normally associated with the bacterial outer membrane, and was also present in or on outer membrane vesicles (OMVs) released from the bacterial surface, says Khandelwal. They then searched through OMV components and identified a small (17 kDa) toxic protein. When purified, this protein was toxic to cultured larval cells and directly killed H. armigera larvae. Gene cloning and sequencing showed this protein is related to a class of bacterial outer membrane proteins that form protrusions, called pili or fimbriae, which often help bacteria attach to host cells during infection. Similar to pili proteins, the purified 17 kDa protein self-associated to form oligomers, each of which was connected to the next by a strand. Most importantly, the recombinant 17 kDa protein killed H. armigera larvae, demonstrating its potential as a biological control agent in a world desperately in need of new ideas.

Insecticidal activity associated with a 17 kDa pilin protein of Xenorhabdus nematophila, P. Khandelwal,1 R. Bhatnagar,1 N. Banerjee2 ; 1 Centre For Biotechnology, Jawaharlal Nehru University, New Delhi, India, 2 Insect resistance, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

At the meeting: Session 329, Structure & Function of Membrane Proteins II, Poster Presentation 1726, Halls D/E. Author presents: Tuesday, Dec. 7, 1:30— 3:00 PM.

| newswise
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>