Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thinking about moving? Let brain waves do the walking

03.12.2004


Using brain waves to control screen cursor movements, rather than moving a mouse by hand, seems like science fiction! Yet such direct control over our environment is an integral part of the development work being undertaken by participants in the Presencia project.

The IST project Presencia is not due for completion until October 2005, yet project researchers have already developed a working brain/computer interface able to provide direct control of computers. The method is primitive as yet, but has been demonstrated to work. Users experiencing the system have a cap of electroencephalogram (EEG) electrodes placed upon their head. These electrodes are then connected to a pocket PC that records the EEG data or brain waves in real-time. Sat in front of the PC screen, users imagine moving the cursor to the left and then to the right, without actually moving their hands.

The whole procedure is repeated 20 times for each different movement while the PC records the volunteer’s brain wave data throughout. With the Presencia software trained to recognise the volunteer’s brain wave patterns, activation of a control signal then allows the user to move the on-screen cursor either to the left or to the right, simply by imagining the movement!



Explaining that the computer can be trained in the same way for foot movements and up/down control of the cursor, Christoph Guger (of Austria’s Guger Technologies) stresses that such training is not difficult. “We estimate that about six per cent of people, on average, can learn to control such simple cursor movements within around thirty minutes, with an accuracy of around ninety per cent. Almost everyone could train themselves to do it within a day.”

Presencia project participants are developing the technology to navigate ‘caves’, or virtual environments. Here VR (virtual reality) gloves and the brain/computer interface enable participants to move around within an environment and interact with others present. However, the technology also has obvious potential for patient rehabilitation applications. Here the brain/computer interface could be used to control prosthetic limbs or drive a wheelchair.

Guger admits that in its present form the technology is experimental. In theory, the interface could be developed to help patients suffering from the neuro-muscular disease ALS (Amyotrophic Lateral Sclerosis) for example, helping them to write complete sentences. However, the present rate of production of one minute per character will need much more development before reaching commercial reality.

Yet he believes that such direct brain control of our surrounding is only a matter of time. “In 1999, there were just twenty-one labs in the world working on this area – now there are over one hundred.” As he says, “Thirty years ago, pacemaker implants into the human heart were unusual – now we take them for granted.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>