Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Thinking about moving? Let brain waves do the walking


Using brain waves to control screen cursor movements, rather than moving a mouse by hand, seems like science fiction! Yet such direct control over our environment is an integral part of the development work being undertaken by participants in the Presencia project.

The IST project Presencia is not due for completion until October 2005, yet project researchers have already developed a working brain/computer interface able to provide direct control of computers. The method is primitive as yet, but has been demonstrated to work. Users experiencing the system have a cap of electroencephalogram (EEG) electrodes placed upon their head. These electrodes are then connected to a pocket PC that records the EEG data or brain waves in real-time. Sat in front of the PC screen, users imagine moving the cursor to the left and then to the right, without actually moving their hands.

The whole procedure is repeated 20 times for each different movement while the PC records the volunteer’s brain wave data throughout. With the Presencia software trained to recognise the volunteer’s brain wave patterns, activation of a control signal then allows the user to move the on-screen cursor either to the left or to the right, simply by imagining the movement!

Explaining that the computer can be trained in the same way for foot movements and up/down control of the cursor, Christoph Guger (of Austria’s Guger Technologies) stresses that such training is not difficult. “We estimate that about six per cent of people, on average, can learn to control such simple cursor movements within around thirty minutes, with an accuracy of around ninety per cent. Almost everyone could train themselves to do it within a day.”

Presencia project participants are developing the technology to navigate ‘caves’, or virtual environments. Here VR (virtual reality) gloves and the brain/computer interface enable participants to move around within an environment and interact with others present. However, the technology also has obvious potential for patient rehabilitation applications. Here the brain/computer interface could be used to control prosthetic limbs or drive a wheelchair.

Guger admits that in its present form the technology is experimental. In theory, the interface could be developed to help patients suffering from the neuro-muscular disease ALS (Amyotrophic Lateral Sclerosis) for example, helping them to write complete sentences. However, the present rate of production of one minute per character will need much more development before reaching commercial reality.

Yet he believes that such direct brain control of our surrounding is only a matter of time. “In 1999, there were just twenty-one labs in the world working on this area – now there are over one hundred.” As he says, “Thirty years ago, pacemaker implants into the human heart were unusual – now we take them for granted.”

Tara Morris | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>