Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The logic of life brings order to our genes

30.11.2004


It is tricky enough to get a soccer team of eleven players to cooperate and work as one – but what would it be like if there were 25,000 players on the field? What would the rules be like, and how many referees would it take to make sure that the rules were followed? As it happens, our genomes consist of networks of roughly 25,000 interacting genes, and these networks are obviously very stable and resilient to changed conditions. Out of billions of cells, not a single one falls into chaos. How can order be maintained? A question that scientists have been pondering since the 1960s may now have been answered by theoretical physicists at Lund University, Sweden.



In the most recent issue of the Proceedings of the National Academy of Sciences USA, professor Carsten Peterson and his collaborators Björn Samuelsson and Carl Troein demonstrate how this is possible. The American physician and scientist Stuart Kauffman – a pioneer in the field, who formulated and attempted to solve the problem as early as 1967 – is their co-author.

At any given time, each of the 25,000 genes in a cell may or may not be producing a protein – each gene is ’on’ or ’off’, to use language from the world of computers. A gene can affect other genes, turning them ’on’ or ’off’. A simple case is that two genes are controlling a third gene. To activate this third gene, both the controlling genes might need to be active, or maybe only one or the other.


“In such a simple subsystem, sixteen different rules are possible in the interaction between the genes, and a large number of different solutions can emerge for the entire network,” says professor Peterson. It was systems like this that Dr. Kauffman started working with; he assumed that the different solutions corresponded to different cell types. This would also explain how the DNA can be the same in all types of cells. Unfortunately, real systems are vastly more complicated. More than two genes may be involved in activating a single gene. In the case of three controlling genes, there are already 256 different rules. And in a system of 25 genes, the number of possibilities is greater than the number of atoms in the known universe...

To find those solutions that would produce stable systems, Peterson and his collaborators have primarily used literature knowledge from the foremost guinea pig of genetics: the fruit fly. More is known about the details of the genetic network here than in humans.
“In the fruit fly one can find almost 200 rules that are canalyzing, and this property is most likely general and applicable to genetic networks in other organisms,” Carsten Peterson notes. “With ’canalyzing’ we mean that there is a controlling gene that decides the value of the gene it activates by being either on or off. In that case, other controlling genes don’t have any effect on the activated gene. It doesn’t matter whether they are on or off.

With canalyzing rules, it turns out that the networks become stable regardless of the number of controlling genes, the size of the networks and the initial state of the system.” It might be added that when Stuart Kauffman first started working on this problem, he was using punch cards. Now that the problem has been solved, it was not thanks to simulations on a powerful computer – it has been sufficient with observations, logical thinking and mathematical labor.

Göran Frankel | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>