Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The logic of life brings order to our genes

30.11.2004


It is tricky enough to get a soccer team of eleven players to cooperate and work as one – but what would it be like if there were 25,000 players on the field? What would the rules be like, and how many referees would it take to make sure that the rules were followed? As it happens, our genomes consist of networks of roughly 25,000 interacting genes, and these networks are obviously very stable and resilient to changed conditions. Out of billions of cells, not a single one falls into chaos. How can order be maintained? A question that scientists have been pondering since the 1960s may now have been answered by theoretical physicists at Lund University, Sweden.



In the most recent issue of the Proceedings of the National Academy of Sciences USA, professor Carsten Peterson and his collaborators Björn Samuelsson and Carl Troein demonstrate how this is possible. The American physician and scientist Stuart Kauffman – a pioneer in the field, who formulated and attempted to solve the problem as early as 1967 – is their co-author.

At any given time, each of the 25,000 genes in a cell may or may not be producing a protein – each gene is ’on’ or ’off’, to use language from the world of computers. A gene can affect other genes, turning them ’on’ or ’off’. A simple case is that two genes are controlling a third gene. To activate this third gene, both the controlling genes might need to be active, or maybe only one or the other.


“In such a simple subsystem, sixteen different rules are possible in the interaction between the genes, and a large number of different solutions can emerge for the entire network,” says professor Peterson. It was systems like this that Dr. Kauffman started working with; he assumed that the different solutions corresponded to different cell types. This would also explain how the DNA can be the same in all types of cells. Unfortunately, real systems are vastly more complicated. More than two genes may be involved in activating a single gene. In the case of three controlling genes, there are already 256 different rules. And in a system of 25 genes, the number of possibilities is greater than the number of atoms in the known universe...

To find those solutions that would produce stable systems, Peterson and his collaborators have primarily used literature knowledge from the foremost guinea pig of genetics: the fruit fly. More is known about the details of the genetic network here than in humans.
“In the fruit fly one can find almost 200 rules that are canalyzing, and this property is most likely general and applicable to genetic networks in other organisms,” Carsten Peterson notes. “With ’canalyzing’ we mean that there is a controlling gene that decides the value of the gene it activates by being either on or off. In that case, other controlling genes don’t have any effect on the activated gene. It doesn’t matter whether they are on or off.

With canalyzing rules, it turns out that the networks become stable regardless of the number of controlling genes, the size of the networks and the initial state of the system.” It might be added that when Stuart Kauffman first started working on this problem, he was using punch cards. Now that the problem has been solved, it was not thanks to simulations on a powerful computer – it has been sufficient with observations, logical thinking and mathematical labor.

Göran Frankel | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>