Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The logic of life brings order to our genes

30.11.2004


It is tricky enough to get a soccer team of eleven players to cooperate and work as one – but what would it be like if there were 25,000 players on the field? What would the rules be like, and how many referees would it take to make sure that the rules were followed? As it happens, our genomes consist of networks of roughly 25,000 interacting genes, and these networks are obviously very stable and resilient to changed conditions. Out of billions of cells, not a single one falls into chaos. How can order be maintained? A question that scientists have been pondering since the 1960s may now have been answered by theoretical physicists at Lund University, Sweden.



In the most recent issue of the Proceedings of the National Academy of Sciences USA, professor Carsten Peterson and his collaborators Björn Samuelsson and Carl Troein demonstrate how this is possible. The American physician and scientist Stuart Kauffman – a pioneer in the field, who formulated and attempted to solve the problem as early as 1967 – is their co-author.

At any given time, each of the 25,000 genes in a cell may or may not be producing a protein – each gene is ’on’ or ’off’, to use language from the world of computers. A gene can affect other genes, turning them ’on’ or ’off’. A simple case is that two genes are controlling a third gene. To activate this third gene, both the controlling genes might need to be active, or maybe only one or the other.


“In such a simple subsystem, sixteen different rules are possible in the interaction between the genes, and a large number of different solutions can emerge for the entire network,” says professor Peterson. It was systems like this that Dr. Kauffman started working with; he assumed that the different solutions corresponded to different cell types. This would also explain how the DNA can be the same in all types of cells. Unfortunately, real systems are vastly more complicated. More than two genes may be involved in activating a single gene. In the case of three controlling genes, there are already 256 different rules. And in a system of 25 genes, the number of possibilities is greater than the number of atoms in the known universe...

To find those solutions that would produce stable systems, Peterson and his collaborators have primarily used literature knowledge from the foremost guinea pig of genetics: the fruit fly. More is known about the details of the genetic network here than in humans.
“In the fruit fly one can find almost 200 rules that are canalyzing, and this property is most likely general and applicable to genetic networks in other organisms,” Carsten Peterson notes. “With ’canalyzing’ we mean that there is a controlling gene that decides the value of the gene it activates by being either on or off. In that case, other controlling genes don’t have any effect on the activated gene. It doesn’t matter whether they are on or off.

With canalyzing rules, it turns out that the networks become stable regardless of the number of controlling genes, the size of the networks and the initial state of the system.” It might be added that when Stuart Kauffman first started working on this problem, he was using punch cards. Now that the problem has been solved, it was not thanks to simulations on a powerful computer – it has been sufficient with observations, logical thinking and mathematical labor.

Göran Frankel | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>