Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding Could Improve Safety of Stem Cell Transplants

30.11.2004


Neuroprogenitor cells in culture that will become neurons.


Cells in culture with neurons stained green, supporting glial cells stained red and cell nuclei stained blue.


A lipid that helps destroy potentially harmful cells during brain development shows promise for improving the safety and efficacy of stem cell transplants, say researchers at the Medical College of Georgia and University of Georgia.

When embryonic stem cells are being coaxed toward becoming brain cells that could be transplanted, that lipid, ceramide, helps eliminate cells that could later form tumors called teratomas, researchers say in the Nov. 22 issue of The Journal of Cell Biology.

“The body has amazing mechanisms to eliminate cells that are no longer wanted and that if they remain will harm the body by developing into tissues that are not meant to be,” says Dr. Erhard Bieberich, MCG biochemist and the study’s lead author. “Our studies show this particular mechanism can help stem cells safely become the cells we want them to be.” “This is another approach to controlling differentiation and getting the cell types that you want,” says Dr. Brian G. Condie, developmental neurobiologist at UGA and MCG and senior author on the paper.



While it’s the ability of embryonic stem cells to make all types of tissue -- from brain cells to heart cells -- that has scientists worldwide exploring their potential to treat devastating diseases, their pluripotency can also be harmful if uncontrolled, says Dr. Bieberich.

Drs. Bieberich and Condie demonstrated in the Aug. 4, 2003 issue of The Journal of Cell Biology that a natural process occurs during development to eliminate excessive and potentially harmful cells. Just before neurons begin forming, there is a massive production of proteins and up-regulation of lipids. At that point, about half the cells have high levels of the protein PAR-4, half have high levels of the protein, nestin, and all have high levels of ceramide.

The researchers found cells that inherited PAR-4 died when partnered with ceramide. Fortunately, the nestin-bearing cells are most likely to become neurons while the PAR-4 cells, should they survive, could contribute to brain malformation. In this new paper, they took their findings in mouse embryonic stem cells and also looked at an approved line of human embryonic stem cells available through the National Institutes of Health Embryonic Stem Cell Registry.

Neuroprogenitor cells in culture that will become neurons. Cells in culture with neurons stained green, supporting glial cells stained red and cell nuclei stained blue. They found as the cells differentiated in culture, those containing PAR-4 have yet another bad dance card. “We have discovered that particular cells derived from embryonic stem cells that express PAR-4 also cause teratoma formation,” says Dr. Bieberich of the mostly benign growths comprised of multiple types of tissue, typically none of which belong in the tissue where they are found.

They found PAR-4-expressing cells also express Oct-4, a transcription factor that controls a cell’s ability to develop into all three basic types of tissue: mesoderm, ectoderm and endoderm. “If Oct-4 is expressed, the cells are still pluripotent, which is good if you want to grow all those kinds of embryonic layers,” says Dr. Bieberich. “But if you transplant them, you are at risk of forming teratomas.” However, at least in the culture dish, when they added PAR-4’s lethal dance partner, ceramide, to the mix, PAR-4- and Oct-4-expressing cells again died before they could do harm.

The ceramide analogue, N-oleoyl serinol, or S18, also increased the proportion of nestin-containing cells in cell cultures and grafts.

Drs. Bieberich and Condie were quick to note that in their studies, they intentionally left PAR-4- and Oct-4-bearing cells in the mix to see if they could eliminate them. “There already are ways to grow stem cells, purify them in cell culture and get a pure population of stem cells that you can transplant,” says Dr. Condie. “You want to make those cells differentiate into a particular cell type that is no longer able to form teratomas,” Dr. Bieberich says of this purification. “Having said that, that may not always be absolute.” “What we are trying to do is find ways that can be combined with those methods currently being used to further reduce the chances of teratoma formation and make stem cells extremely safe,” Dr. Condie says. “This is something that you want to have zero doubt about.” The next step is to look at an intact mouse embryo to see if the identical processes are at work.

The researchers’ work was funded by the NIH’s National Institute of Neurological Disorders and Stroke. Staff members of Dr. Bieberich’s lab, Dr. Jeane Silva, research coordinator; Dr. Guanghu Wang, research associate; and Kannan Krishnamurthy, graduate student; contributed to this work and co-author the publication.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>