Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding Could Improve Safety of Stem Cell Transplants

30.11.2004


Neuroprogenitor cells in culture that will become neurons.


Cells in culture with neurons stained green, supporting glial cells stained red and cell nuclei stained blue.


A lipid that helps destroy potentially harmful cells during brain development shows promise for improving the safety and efficacy of stem cell transplants, say researchers at the Medical College of Georgia and University of Georgia.

When embryonic stem cells are being coaxed toward becoming brain cells that could be transplanted, that lipid, ceramide, helps eliminate cells that could later form tumors called teratomas, researchers say in the Nov. 22 issue of The Journal of Cell Biology.

“The body has amazing mechanisms to eliminate cells that are no longer wanted and that if they remain will harm the body by developing into tissues that are not meant to be,” says Dr. Erhard Bieberich, MCG biochemist and the study’s lead author. “Our studies show this particular mechanism can help stem cells safely become the cells we want them to be.” “This is another approach to controlling differentiation and getting the cell types that you want,” says Dr. Brian G. Condie, developmental neurobiologist at UGA and MCG and senior author on the paper.



While it’s the ability of embryonic stem cells to make all types of tissue -- from brain cells to heart cells -- that has scientists worldwide exploring their potential to treat devastating diseases, their pluripotency can also be harmful if uncontrolled, says Dr. Bieberich.

Drs. Bieberich and Condie demonstrated in the Aug. 4, 2003 issue of The Journal of Cell Biology that a natural process occurs during development to eliminate excessive and potentially harmful cells. Just before neurons begin forming, there is a massive production of proteins and up-regulation of lipids. At that point, about half the cells have high levels of the protein PAR-4, half have high levels of the protein, nestin, and all have high levels of ceramide.

The researchers found cells that inherited PAR-4 died when partnered with ceramide. Fortunately, the nestin-bearing cells are most likely to become neurons while the PAR-4 cells, should they survive, could contribute to brain malformation. In this new paper, they took their findings in mouse embryonic stem cells and also looked at an approved line of human embryonic stem cells available through the National Institutes of Health Embryonic Stem Cell Registry.

Neuroprogenitor cells in culture that will become neurons. Cells in culture with neurons stained green, supporting glial cells stained red and cell nuclei stained blue. They found as the cells differentiated in culture, those containing PAR-4 have yet another bad dance card. “We have discovered that particular cells derived from embryonic stem cells that express PAR-4 also cause teratoma formation,” says Dr. Bieberich of the mostly benign growths comprised of multiple types of tissue, typically none of which belong in the tissue where they are found.

They found PAR-4-expressing cells also express Oct-4, a transcription factor that controls a cell’s ability to develop into all three basic types of tissue: mesoderm, ectoderm and endoderm. “If Oct-4 is expressed, the cells are still pluripotent, which is good if you want to grow all those kinds of embryonic layers,” says Dr. Bieberich. “But if you transplant them, you are at risk of forming teratomas.” However, at least in the culture dish, when they added PAR-4’s lethal dance partner, ceramide, to the mix, PAR-4- and Oct-4-expressing cells again died before they could do harm.

The ceramide analogue, N-oleoyl serinol, or S18, also increased the proportion of nestin-containing cells in cell cultures and grafts.

Drs. Bieberich and Condie were quick to note that in their studies, they intentionally left PAR-4- and Oct-4-bearing cells in the mix to see if they could eliminate them. “There already are ways to grow stem cells, purify them in cell culture and get a pure population of stem cells that you can transplant,” says Dr. Condie. “You want to make those cells differentiate into a particular cell type that is no longer able to form teratomas,” Dr. Bieberich says of this purification. “Having said that, that may not always be absolute.” “What we are trying to do is find ways that can be combined with those methods currently being used to further reduce the chances of teratoma formation and make stem cells extremely safe,” Dr. Condie says. “This is something that you want to have zero doubt about.” The next step is to look at an intact mouse embryo to see if the identical processes are at work.

The researchers’ work was funded by the NIH’s National Institute of Neurological Disorders and Stroke. Staff members of Dr. Bieberich’s lab, Dr. Jeane Silva, research coordinator; Dr. Guanghu Wang, research associate; and Kannan Krishnamurthy, graduate student; contributed to this work and co-author the publication.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>