Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in gene usage dramatically change bacteria’s ’lifestyles’

30.11.2004


When and where a bacterium uses its DNA can be as important as what’s in the DNA, according to researchers at Washington University School of Medicine in St. Louis.



Scientists found significant differences in two bacterial organisms’ use of a gene linked to processes that govern a form of antibiotic resistance. The distinction alters the bacteria’s "lifestyles," or their ability to survive in different environments. Researchers say the finding shows that understanding such changes will likely help development of new treatments for disease-causing microorganisms. "These differences in gene usage are harder to look for, but we’re not going to understand these organisms fully unless we take into account this other dimension," says senior investigator Eduardo Groisman, Ph.D., professor of molecular microbiology and Howard Hughes Medical Institute investigator.

The study appears the week of Nov. 29 in the online edition of the Proceedings of the National Academy of Sciences and in print on Dec. 7.


One of the bacteria studied, Salmonella enterica, is a leading cause of food poisoning and illness related to animal husbandry. The other, Escherichia coli, can cause illness but more typically plays a beneficial role in the human digestive system. The two are closely related genetically. Less than 20 percent of E. coli’s genes are not found in Salmonella and just over 25 percent of Salmonella’s genes lack counterparts in E. coli.

Groisman’s research had previously focused on how differences in gene content made Salmonella a persistent source of illness. He identified several areas in the bacteria’s DNA known as "pathogenicity islands" -- clusters of genes unique to Salmonella that help it cause illness. When complete gene maps for both bacteria became available in recent years, his interests expanded to understanding how the bacteria might use identical genes differently.

Salmonella and E. coli share the gene for an antibiotic resistance regulatory protein called PmrA. By controlling when other proteins are produced, PmrA can make the cell wall more resistant to damage from the antibiotic polymyxin B. The PmrA protein normally activates in response to high iron levels.

In a paper recently published in Genes and Development, Groisman’s lab established that another protein, PmrD, also can activate PmrA in response to low magnesium levels. In the new study, Groisman’s lab discovered that E. coli has a different version of PmrD that is unable to turn on the PmrA protein in response to low magnesium. "We’re not really sure what the significance of low magnesium is, but there are some indications that it may be important to the bacteria’s ability to survive in white blood cells or outside of the host in soil or water," Groisman says.

When scientists transplanted the Salmonella form of PmrD into E. coli, the bacteria gained the ability to resist polymyxin B in low magnesium environments. Based on data still to be published, Groisman suspects that many other aspects of microbial lifestyle are affected by differences in regulation of identical genes. He notes that the idea of different organisms making altered use of the same genes sprang from recent analyses of the human genome. "Humans not only appear to have far fewer genes than expected, there also seem to be fewer genes that are unique to human DNA than anticipated," Groisman explains.

In addition to instructions for building proteins, DNA contains stretches of code that affect when genes are turned on and off. As life becomes more complex over the course of evolution, Groisman explains, these regulatory sections appear to take up larger portions of the DNA, allowing genes to be turned on and off in ways that are more intricately responsive to the environment and other factors.

Human DNA, Groisman speculates, may be heavily packed with the factors that allow a more complex, richer use of genes also found in other organisms.

Michael Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>