Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in gene usage dramatically change bacteria’s ’lifestyles’

30.11.2004


When and where a bacterium uses its DNA can be as important as what’s in the DNA, according to researchers at Washington University School of Medicine in St. Louis.



Scientists found significant differences in two bacterial organisms’ use of a gene linked to processes that govern a form of antibiotic resistance. The distinction alters the bacteria’s "lifestyles," or their ability to survive in different environments. Researchers say the finding shows that understanding such changes will likely help development of new treatments for disease-causing microorganisms. "These differences in gene usage are harder to look for, but we’re not going to understand these organisms fully unless we take into account this other dimension," says senior investigator Eduardo Groisman, Ph.D., professor of molecular microbiology and Howard Hughes Medical Institute investigator.

The study appears the week of Nov. 29 in the online edition of the Proceedings of the National Academy of Sciences and in print on Dec. 7.


One of the bacteria studied, Salmonella enterica, is a leading cause of food poisoning and illness related to animal husbandry. The other, Escherichia coli, can cause illness but more typically plays a beneficial role in the human digestive system. The two are closely related genetically. Less than 20 percent of E. coli’s genes are not found in Salmonella and just over 25 percent of Salmonella’s genes lack counterparts in E. coli.

Groisman’s research had previously focused on how differences in gene content made Salmonella a persistent source of illness. He identified several areas in the bacteria’s DNA known as "pathogenicity islands" -- clusters of genes unique to Salmonella that help it cause illness. When complete gene maps for both bacteria became available in recent years, his interests expanded to understanding how the bacteria might use identical genes differently.

Salmonella and E. coli share the gene for an antibiotic resistance regulatory protein called PmrA. By controlling when other proteins are produced, PmrA can make the cell wall more resistant to damage from the antibiotic polymyxin B. The PmrA protein normally activates in response to high iron levels.

In a paper recently published in Genes and Development, Groisman’s lab established that another protein, PmrD, also can activate PmrA in response to low magnesium levels. In the new study, Groisman’s lab discovered that E. coli has a different version of PmrD that is unable to turn on the PmrA protein in response to low magnesium. "We’re not really sure what the significance of low magnesium is, but there are some indications that it may be important to the bacteria’s ability to survive in white blood cells or outside of the host in soil or water," Groisman says.

When scientists transplanted the Salmonella form of PmrD into E. coli, the bacteria gained the ability to resist polymyxin B in low magnesium environments. Based on data still to be published, Groisman suspects that many other aspects of microbial lifestyle are affected by differences in regulation of identical genes. He notes that the idea of different organisms making altered use of the same genes sprang from recent analyses of the human genome. "Humans not only appear to have far fewer genes than expected, there also seem to be fewer genes that are unique to human DNA than anticipated," Groisman explains.

In addition to instructions for building proteins, DNA contains stretches of code that affect when genes are turned on and off. As life becomes more complex over the course of evolution, Groisman explains, these regulatory sections appear to take up larger portions of the DNA, allowing genes to be turned on and off in ways that are more intricately responsive to the environment and other factors.

Human DNA, Groisman speculates, may be heavily packed with the factors that allow a more complex, richer use of genes also found in other organisms.

Michael Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>