Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New findings in innate immunity may lead to treatments for atherosclerosis


Scientists are one step closer to deciphering the molecular signaling process controlling innate immunity with the discovery that a molecule called IRAK1 regulates the expression of the anti-inflammatory cytokine IL-10. Because atherosclerosis patients often have elevated IL-10 levels, IRAK1 may be a viable target for developing therapeutics for atherosclerosis. The research appears as the "Paper of the Week" in the December 3 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Innate immunity is the body’s first response to infection, and it plays a major role in regulating infection, inflammation, cell growth, and apoptosis. During an innate immune reaction, macrophages, dendritic cells, and epithelial cells use a set of transmembrane receptors called Toll-like receptors (TLRs) to initiate signaling cascades. "TLRs can sense diverse environmental cues and send signals downstream to a family of interleukin-1 receptor associated kinases (IRAKs). These IRAKs then activate and/or regulate specific cytokine gene expression," explains Dr. Liwu Li of the Wake Forest University School of Medicine.

However, the specificity of the TLR signaling process is not clearly understood. "In the past," says Dr. Li, "it was thought that all IRAKs may play a somewhat redundant role in regulating the nuclear transcription factor NFêB and the expression of pro-inflammatory cytokines such as IL-1beta and TNFalpha." However, mice that lack IRAK1 can still activate NFêB, suggesting that IRAK1 may be involved in other activities.

Dr. Li and his colleagues discovered that IRAK1 actually activates a molecule called Signal Transducer and Activator of Transcription 3, or Stat3, which in turn activates expression of the anti-inflammatory cytokine IL-10. The scientists also found that IRAK1 can translocate into the nucleus and regulate the nuclear transcription of proteins. "Our finding sets IRAK1 apart from other IRAKs and elucidates a novel pathway in innate immunity regulation," says Dr. Li.

Because atherosclerosis patients usually have elevated serum IL-10 levels, the scientists also looked at IRAK1 levels in blood from atherosclerosis patients. They found that IRAK1 is modified and localized to the nucleus in these patients, indicating a possible link between IRAK1 regulation and the pathogenesis of atherosclerosis. "Inflammation and infection have been increasingly shown to play a significant role in the pathogenesis and/or resolution of atherosclerosis," explains Dr. Li. "Anti- inflammatory cytokines such as IL-10 may serve as a self protective mechanism to prevent excessive inflammation and contribute to plaque stability. Indeed, patients with higher IL-10 serum levels have a better chance of recovery. Therefore, elevated IRAK1 modification and IL-10 levels observed in atherosclerosis patients may be a compensatory and self-protective mechanism."

Manipulating innate immunity may eventually be a therapeutic strategy for treating atherosclerosis. "Our study, as well as others, indicates that innate immunity alteration plays a critical role in either the pathogenesis or resolution of atherosclerosis. IRAK1 may provide a viable target for developing therapeutic interventions for atherosclerosis. Compounds or strategies directed at preventing or enhancing IRAK1 modification and nuclear entry may hold great promise in treating atherosclerosis," concludes Dr. Li.

Besides atherosclerosis, alterations in innate immunity can cause diabetes, cancer, and numerous other inflammatory disorders. Further understanding of the innate immunity process may lead to development of therapies for these diseases as well.

Nicole Kresge | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>