Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings in innate immunity may lead to treatments for atherosclerosis

26.11.2004


Scientists are one step closer to deciphering the molecular signaling process controlling innate immunity with the discovery that a molecule called IRAK1 regulates the expression of the anti-inflammatory cytokine IL-10. Because atherosclerosis patients often have elevated IL-10 levels, IRAK1 may be a viable target for developing therapeutics for atherosclerosis. The research appears as the "Paper of the Week" in the December 3 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.



Innate immunity is the body’s first response to infection, and it plays a major role in regulating infection, inflammation, cell growth, and apoptosis. During an innate immune reaction, macrophages, dendritic cells, and epithelial cells use a set of transmembrane receptors called Toll-like receptors (TLRs) to initiate signaling cascades. "TLRs can sense diverse environmental cues and send signals downstream to a family of interleukin-1 receptor associated kinases (IRAKs). These IRAKs then activate and/or regulate specific cytokine gene expression," explains Dr. Liwu Li of the Wake Forest University School of Medicine.

However, the specificity of the TLR signaling process is not clearly understood. "In the past," says Dr. Li, "it was thought that all IRAKs may play a somewhat redundant role in regulating the nuclear transcription factor NFêB and the expression of pro-inflammatory cytokines such as IL-1beta and TNFalpha." However, mice that lack IRAK1 can still activate NFêB, suggesting that IRAK1 may be involved in other activities.


Dr. Li and his colleagues discovered that IRAK1 actually activates a molecule called Signal Transducer and Activator of Transcription 3, or Stat3, which in turn activates expression of the anti-inflammatory cytokine IL-10. The scientists also found that IRAK1 can translocate into the nucleus and regulate the nuclear transcription of proteins. "Our finding sets IRAK1 apart from other IRAKs and elucidates a novel pathway in innate immunity regulation," says Dr. Li.

Because atherosclerosis patients usually have elevated serum IL-10 levels, the scientists also looked at IRAK1 levels in blood from atherosclerosis patients. They found that IRAK1 is modified and localized to the nucleus in these patients, indicating a possible link between IRAK1 regulation and the pathogenesis of atherosclerosis. "Inflammation and infection have been increasingly shown to play a significant role in the pathogenesis and/or resolution of atherosclerosis," explains Dr. Li. "Anti- inflammatory cytokines such as IL-10 may serve as a self protective mechanism to prevent excessive inflammation and contribute to plaque stability. Indeed, patients with higher IL-10 serum levels have a better chance of recovery. Therefore, elevated IRAK1 modification and IL-10 levels observed in atherosclerosis patients may be a compensatory and self-protective mechanism."

Manipulating innate immunity may eventually be a therapeutic strategy for treating atherosclerosis. "Our study, as well as others, indicates that innate immunity alteration plays a critical role in either the pathogenesis or resolution of atherosclerosis. IRAK1 may provide a viable target for developing therapeutic interventions for atherosclerosis. Compounds or strategies directed at preventing or enhancing IRAK1 modification and nuclear entry may hold great promise in treating atherosclerosis," concludes Dr. Li.

Besides atherosclerosis, alterations in innate immunity can cause diabetes, cancer, and numerous other inflammatory disorders. Further understanding of the innate immunity process may lead to development of therapies for these diseases as well.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>