Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory chemists create unprecedented metallic molecule

26.11.2004


For the first time ever, Emory University researchers have broken through the so-called "oxo-wall" to create stable multiple chemical bonds between oxygen and platinum – once thought impossible because oxygen is extremely unstable when combined with certain metals. The breakthrough holds the potential for numerous applications in fuel cells, catalytic converters and emerging ’green’ chemistry.



Chemical bonds between metals and oxygen are known as metal-oxo species, and are found in a multitude of molecules and materials. They are dominant in the chemistry, geology and biology of many metal elements, especially during oxidation – one of the most basic and fundamental of chemical reactions. However, metal-oxo species become increasingly less stable as one moves from left to right on the periodic table. Until this work, attempts to create metal-oxo species with elements such as gold, platinum, silver, iridium and rhodium have been unsuccessful.

"The existence of such metal-oxo complexes has been presented and debated in many public forums but never realized until this research. Since this metal-oxo is a unique compound, both its physical properties and its chemical reactivities should provide new insights and break new ground," says principal investigator Craig Hill, Goodrich C. White Professor of Chemistry at Emory.


The paper will appear in the Nov. 25 edition of Science Express, an online publication of selected research papers that have recently been accepted for publication in the journal Science. "Oxygen is usually very unreactive in its molecular state as O2, or, when you do break the bond, it reacts uncontrollably. In nature, iron is one of the most versatile elements in its ability to control oxygen, and can pluck a single oxygen atom and transfer it where it wants to go. We wanted to take what nature knows how to do with iron, and do it ourselves with other metals," says Travis Anderson, lead post-doctoral researcher for the project. He says the next step will be to create metal-oxo bonds with platinum’s neighbors on the periodic table.

"Out of the 12 metals that have been behind this ’oxo-wall’ in columns 9-12 of the periodic table it is very exciting that we were able to create metal-oxo compound with platinum since it is an excellent catalyst for environmentally friendly processes," Anderson says.

Stable compounds of platinum and oxygen could be centrally important to the operation of automobile catalytic converters. Catalytic converters use a platinum catalyst to interact with oxygen in the air to form highly reactive platinum-oxygen intermediates and other species that fully combust the partially burned fossil fuels emanating from the internal combustion engine. The platinum-oxo compound is expected to be a model for these highly elusive platinum-oxygen intermediates and, as such, could provide key insights into improving existing technology.

One important and growing technology where the platinum-oxo unit may also be key is fuel cells. The electrodes in these cells are frequently based on platinum, and in some instances the reaction of platinum with oxygen is central to their operation.

In addition, metallic platinum has long been known to be an excellent catalyst for oxidations of organic compounds. Today, oxidations by O2 (including air) are of considerable and growing interest in part because they are quite green. In other words, such organic oxidations, which are important in several industries, can, in principle, generate fewer inorganic by-products, work under more benign conditions, permit products to be separated more easily and generate less waste. Platinum-oxo species could well be the critical intermediates in these diverse O2-based oxidations.

The Science paper was authored by Hill; Anderson; chemistry professor Keiji Morokuma; Jamal Musaev, manager of Emory’s Cherry L. Emerson Center for Computational Chemistry; Emory graduate students Wade Neiwert and Rui Cao; and collaborators at Argonne National Lab and the University of New Mexico.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>