Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory chemists create unprecedented metallic molecule

26.11.2004


For the first time ever, Emory University researchers have broken through the so-called "oxo-wall" to create stable multiple chemical bonds between oxygen and platinum – once thought impossible because oxygen is extremely unstable when combined with certain metals. The breakthrough holds the potential for numerous applications in fuel cells, catalytic converters and emerging ’green’ chemistry.



Chemical bonds between metals and oxygen are known as metal-oxo species, and are found in a multitude of molecules and materials. They are dominant in the chemistry, geology and biology of many metal elements, especially during oxidation – one of the most basic and fundamental of chemical reactions. However, metal-oxo species become increasingly less stable as one moves from left to right on the periodic table. Until this work, attempts to create metal-oxo species with elements such as gold, platinum, silver, iridium and rhodium have been unsuccessful.

"The existence of such metal-oxo complexes has been presented and debated in many public forums but never realized until this research. Since this metal-oxo is a unique compound, both its physical properties and its chemical reactivities should provide new insights and break new ground," says principal investigator Craig Hill, Goodrich C. White Professor of Chemistry at Emory.


The paper will appear in the Nov. 25 edition of Science Express, an online publication of selected research papers that have recently been accepted for publication in the journal Science. "Oxygen is usually very unreactive in its molecular state as O2, or, when you do break the bond, it reacts uncontrollably. In nature, iron is one of the most versatile elements in its ability to control oxygen, and can pluck a single oxygen atom and transfer it where it wants to go. We wanted to take what nature knows how to do with iron, and do it ourselves with other metals," says Travis Anderson, lead post-doctoral researcher for the project. He says the next step will be to create metal-oxo bonds with platinum’s neighbors on the periodic table.

"Out of the 12 metals that have been behind this ’oxo-wall’ in columns 9-12 of the periodic table it is very exciting that we were able to create metal-oxo compound with platinum since it is an excellent catalyst for environmentally friendly processes," Anderson says.

Stable compounds of platinum and oxygen could be centrally important to the operation of automobile catalytic converters. Catalytic converters use a platinum catalyst to interact with oxygen in the air to form highly reactive platinum-oxygen intermediates and other species that fully combust the partially burned fossil fuels emanating from the internal combustion engine. The platinum-oxo compound is expected to be a model for these highly elusive platinum-oxygen intermediates and, as such, could provide key insights into improving existing technology.

One important and growing technology where the platinum-oxo unit may also be key is fuel cells. The electrodes in these cells are frequently based on platinum, and in some instances the reaction of platinum with oxygen is central to their operation.

In addition, metallic platinum has long been known to be an excellent catalyst for oxidations of organic compounds. Today, oxidations by O2 (including air) are of considerable and growing interest in part because they are quite green. In other words, such organic oxidations, which are important in several industries, can, in principle, generate fewer inorganic by-products, work under more benign conditions, permit products to be separated more easily and generate less waste. Platinum-oxo species could well be the critical intermediates in these diverse O2-based oxidations.

The Science paper was authored by Hill; Anderson; chemistry professor Keiji Morokuma; Jamal Musaev, manager of Emory’s Cherry L. Emerson Center for Computational Chemistry; Emory graduate students Wade Neiwert and Rui Cao; and collaborators at Argonne National Lab and the University of New Mexico.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>