Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Utah study suggests cellular waste to blame for a form of blinding eye disease

24.11.2004


Discovery offers hope for a pharmaceutical intervention to treat some forms of retinitis pigmentosa



Gene mutations that impair the ability of photoreceptor cells to properly dispose of waste - and as a result cause the blinding eye disease retinitis pigmentosa - have been identified by vision researchers at the University of Utah’s Moran Eye Center. The discovery raises concerns that carbonic anhydrase inhibitors (medications often used to treat both heart and eye diseases) may adversely affect vision. The study is published in the November 24, 2004 online version of the journal Human Molecular Genetics.

Retinitis pigmentosa (RP) is one of the most common causes of blindness. It affects one in 3,500 people or approximately two million people worldwide. Patients with RP typically are diagnosed with night blindness and, as the disease progresses, they eventually lose all of their peripheral vision and a significant portion of their central vision.


Photoreceptor cells (known as rods and cones) are located in the eye’s retina and are responsible for converting light into electrical impulses for transmitting messages to the brain, according to Kang Zhang, M.D., Ph.D., the study’s senior author. This process of converting light to electrical signals in the retina requires a tremendous amount of energy which, in turn, creates waste in the form of carbon dioxide and bicarbonate.

According to the paper, patients in the study each had a mutation in which a defect in the process responsible for handling carbon dioxide waste and maintaining acid and base balance led to photoreceptor degeneration.

Zhang says the mutation inhibits function of a protein complex made up of carbonic anhydrase 4 (CA4) and Na+/Bicarbonate Co-transporter1 (NBC1) from doing its job of controlling acid and base balance. "In healthy eyes this acid waste is released from the retina and into the bloodstream via tiny blood vessels called the choriocapillaris which are located adjacent to the photoreceptors. When this doesn’t happen, we see the death of photoreceptor cells and the start of retinitis pigmentosa," said Zhang.

The study also suggests additional research is needed to determine whether carbonic anhydrase inhibitors may affect vision. According to the study, "the importance of a functional CA4 for survival of photoreceptors implies that carbonic anhydrase inhibitors, which are widely used as medications, particularly in the treatment of glaucoma, may have long-term adverse effects on vision."

Zhang says it’s not clear how many cases of RP can be attributed to this newly discovered CA4 gene mutation. "However, we have already gained invaluable lessons from studying four families with this mutation. The next step is to begin working on a pharmaceutical intervention to counteract the effect of the gene mutations," he said.

Although one of the three gene mutations in this study was independently reported by a group of researchers at the University of Cape Town and St. Louis University, Zhang says these new results indicate a completely different mechanism causing blindness.

In addition to Zhang, other investigators contributing to the new findings are from the University of Alberta, University College of London, Universitätsaugenklinik Tübingen, and University Medical Centre Nijmegen. Zhang is an assistant professor of ophthalmology and visual sciences at the Moran Eye Center. He is also an investigator for the Program in Human Molecular Biology and Genetics at the University of Utah’s Eccles Institute of Human Genetics.

Chris Nelson | EurekAlert!
Further information:
http://www.utah.edu
http://hmg.oupjournals.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>