Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Utah study suggests cellular waste to blame for a form of blinding eye disease


Discovery offers hope for a pharmaceutical intervention to treat some forms of retinitis pigmentosa

Gene mutations that impair the ability of photoreceptor cells to properly dispose of waste - and as a result cause the blinding eye disease retinitis pigmentosa - have been identified by vision researchers at the University of Utah’s Moran Eye Center. The discovery raises concerns that carbonic anhydrase inhibitors (medications often used to treat both heart and eye diseases) may adversely affect vision. The study is published in the November 24, 2004 online version of the journal Human Molecular Genetics.

Retinitis pigmentosa (RP) is one of the most common causes of blindness. It affects one in 3,500 people or approximately two million people worldwide. Patients with RP typically are diagnosed with night blindness and, as the disease progresses, they eventually lose all of their peripheral vision and a significant portion of their central vision.

Photoreceptor cells (known as rods and cones) are located in the eye’s retina and are responsible for converting light into electrical impulses for transmitting messages to the brain, according to Kang Zhang, M.D., Ph.D., the study’s senior author. This process of converting light to electrical signals in the retina requires a tremendous amount of energy which, in turn, creates waste in the form of carbon dioxide and bicarbonate.

According to the paper, patients in the study each had a mutation in which a defect in the process responsible for handling carbon dioxide waste and maintaining acid and base balance led to photoreceptor degeneration.

Zhang says the mutation inhibits function of a protein complex made up of carbonic anhydrase 4 (CA4) and Na+/Bicarbonate Co-transporter1 (NBC1) from doing its job of controlling acid and base balance. "In healthy eyes this acid waste is released from the retina and into the bloodstream via tiny blood vessels called the choriocapillaris which are located adjacent to the photoreceptors. When this doesn’t happen, we see the death of photoreceptor cells and the start of retinitis pigmentosa," said Zhang.

The study also suggests additional research is needed to determine whether carbonic anhydrase inhibitors may affect vision. According to the study, "the importance of a functional CA4 for survival of photoreceptors implies that carbonic anhydrase inhibitors, which are widely used as medications, particularly in the treatment of glaucoma, may have long-term adverse effects on vision."

Zhang says it’s not clear how many cases of RP can be attributed to this newly discovered CA4 gene mutation. "However, we have already gained invaluable lessons from studying four families with this mutation. The next step is to begin working on a pharmaceutical intervention to counteract the effect of the gene mutations," he said.

Although one of the three gene mutations in this study was independently reported by a group of researchers at the University of Cape Town and St. Louis University, Zhang says these new results indicate a completely different mechanism causing blindness.

In addition to Zhang, other investigators contributing to the new findings are from the University of Alberta, University College of London, Universitätsaugenklinik Tübingen, and University Medical Centre Nijmegen. Zhang is an assistant professor of ophthalmology and visual sciences at the Moran Eye Center. He is also an investigator for the Program in Human Molecular Biology and Genetics at the University of Utah’s Eccles Institute of Human Genetics.

Chris Nelson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>