Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Utah study suggests cellular waste to blame for a form of blinding eye disease

24.11.2004


Discovery offers hope for a pharmaceutical intervention to treat some forms of retinitis pigmentosa



Gene mutations that impair the ability of photoreceptor cells to properly dispose of waste - and as a result cause the blinding eye disease retinitis pigmentosa - have been identified by vision researchers at the University of Utah’s Moran Eye Center. The discovery raises concerns that carbonic anhydrase inhibitors (medications often used to treat both heart and eye diseases) may adversely affect vision. The study is published in the November 24, 2004 online version of the journal Human Molecular Genetics.

Retinitis pigmentosa (RP) is one of the most common causes of blindness. It affects one in 3,500 people or approximately two million people worldwide. Patients with RP typically are diagnosed with night blindness and, as the disease progresses, they eventually lose all of their peripheral vision and a significant portion of their central vision.


Photoreceptor cells (known as rods and cones) are located in the eye’s retina and are responsible for converting light into electrical impulses for transmitting messages to the brain, according to Kang Zhang, M.D., Ph.D., the study’s senior author. This process of converting light to electrical signals in the retina requires a tremendous amount of energy which, in turn, creates waste in the form of carbon dioxide and bicarbonate.

According to the paper, patients in the study each had a mutation in which a defect in the process responsible for handling carbon dioxide waste and maintaining acid and base balance led to photoreceptor degeneration.

Zhang says the mutation inhibits function of a protein complex made up of carbonic anhydrase 4 (CA4) and Na+/Bicarbonate Co-transporter1 (NBC1) from doing its job of controlling acid and base balance. "In healthy eyes this acid waste is released from the retina and into the bloodstream via tiny blood vessels called the choriocapillaris which are located adjacent to the photoreceptors. When this doesn’t happen, we see the death of photoreceptor cells and the start of retinitis pigmentosa," said Zhang.

The study also suggests additional research is needed to determine whether carbonic anhydrase inhibitors may affect vision. According to the study, "the importance of a functional CA4 for survival of photoreceptors implies that carbonic anhydrase inhibitors, which are widely used as medications, particularly in the treatment of glaucoma, may have long-term adverse effects on vision."

Zhang says it’s not clear how many cases of RP can be attributed to this newly discovered CA4 gene mutation. "However, we have already gained invaluable lessons from studying four families with this mutation. The next step is to begin working on a pharmaceutical intervention to counteract the effect of the gene mutations," he said.

Although one of the three gene mutations in this study was independently reported by a group of researchers at the University of Cape Town and St. Louis University, Zhang says these new results indicate a completely different mechanism causing blindness.

In addition to Zhang, other investigators contributing to the new findings are from the University of Alberta, University College of London, Universitätsaugenklinik Tübingen, and University Medical Centre Nijmegen. Zhang is an assistant professor of ophthalmology and visual sciences at the Moran Eye Center. He is also an investigator for the Program in Human Molecular Biology and Genetics at the University of Utah’s Eccles Institute of Human Genetics.

Chris Nelson | EurekAlert!
Further information:
http://www.utah.edu
http://hmg.oupjournals.org

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>