Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCI scientists create model that predicts follicular lymphoma survival

19.11.2004


Scientists at the National Cancer Institute (NCI), part of the National Institutes of Health, have created a model that predicts the survival of follicular lymphoma patients based on the molecular characteristics of their tumors at diagnosis. The model is based on two sets of genes--called survival-associated signatures--whose activity was found to be associated with good or poor prognosis for patients with the cancer. The scientists’ results, to be published in the November 19, 2004, New England Journal of Medicine*, suggest that immune cells infiltrating follicular lymphoma tumors have an important impact on survival--both signatures came from such immune cells.



The progression rate of follicular lymphoma, the most common non-Hodgkin lymphoma, varies widely. "In some patients the disease progresses slowly over many years, whereas in others progression is rapid, with the cancer transforming into aggressive lymphoma and leading to early death," explained principle investigator Louis M. Staudt, M.D., Ph.D., of NCI’s Center for Cancer Research. "Understanding the molecular causes of such differences in survival could provide a more accurate method to determine patient risk, which could be used to guide treatment and may suggest new therapeutic approaches."

To create their model, Staudt and associates used follicular lymphoma biopsies taken from 191 untreated patients. The biopsies were taken between 1974 and 2001 and came from North American and European institutions that are part of the NCI-sponsored Lymphoma/Leukemia Molecular Profiling Project**. Following their biopsies, all patients received standard treatments. The NCI scientists examined their subsequent medical records to determine survival. Biopsies were divided into two groups balanced for survival and institution: 95 went into a group used to uncover gene expression patterns associated with survival; the other 95 were used to test the predictive power of these patterns.


NCI scientists first used a DNA micro array to determine which genes were expressed (active) in the first group of 95 tumor biopsies, and at what levels. They then determined which of these genes were statistically associated with survival. They called those associated with long survival "good prognosis genes" and those associated with short survival "poor prognosis genes."

Next, the researchers identified subsets of both kinds of genes that tended to be expressed together. These they named "survival-associated signatures." Two signatures--one which indicated poor prognosis, the other good--had strong synergy and together predicted survival better than any other model tested. Unexpectedly, both came from nonmalignant immune cells infiltrating the tumors. The good prognosis signature genes reflect a mixture of immune cells that is dominated by T cells. T cells react to specific threats to the body’s health. In contrast, the poor prognosis signature genes reflect a different group of immune cells dominated by macrophages and/or dendritic cells--which react to nonspecific threats--rather than T cells.

The two signature model allowed NCI scientists to divide patients into four equal groups with disparate average survival rates of 3.9, 10.8, 11.1, and 13.6 years. For the 75 percent of patients with survival rates 10 years or longer, "watchful waiting is appropriate," Staudt said. "These patients would benefit from knowing that they may not need treatment for quite some time. On the other hand, those patients in the group with the lowest survival rate should be considered for newer treatments and clinical trials," added Staudt.

The fact that the most predictive signatures came from immune cells suggests an important interplay between the host immune system and malignant cells in follicular lymphoma. "One possibility is that the immune cells with the good-prognosis signature are attacking the lymphoma and keeping it in check," Staudt speculated. "Another possibility is that these immune cells may provide signals that encourage the cancer cells not to leave the lymph node, preventing or delaying the spread of the cancer," he added. Knowing more about the signals that may delay the spread of follicular lymphoma could provide new therapeutic targets.

NCI Press Officers | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>