Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle loss from space travel, prolonged inactivity linked to two genes

17.11.2004


Findings point way to identifying therapeutics to stem muscle atrophy

In research that could benefit astronauts posted to the International Space Station as well as individuals whose universe is defined by their sick bed, Boston University Sargent College researchers Susan Kandarian and R. Bridge Hunter have found that disrupting either one of two genes, nfêb1 and bcl3, can block the biological process of muscle wasting known as atrophy.

Their findings will inform efforts to identify therapeutics that could inhibit muscle atrophy caused by a chronic reduction in muscle use. Such treatments could end the muscle loss, weakness, and fatigue that can plague space travelers, sedentary or bed-ridden individuals, or anyone whose muscles undergo long periods of disuse. "By understanding the genes necessary for muscle atrophy," says Kandarian, lead researcher and professor of health sciences at BU Sargent College of Health and Rehabilitation Sciences, "we can begin to study the protein products required for atrophy. Our ongoing research shows that the process of atrophy might be partially moderated by something as straightforward as aspirin or other non-steroidal anti-inflammatory drugs [NSAIDs]."



It is well known that prolonged muscle disuse causes muscles to lose protein in two ways: by decreasing the amount of protein synthesized and by increasing the rate at which muscle protein is degraded. The intracellular signals that drive muscle protein to these extremes, however, are not well known. When designing her study, Kandarian chose to investigate the role of nfêb1 and bcl3, two gene members from a family of transcription factors -- genes that produce proteins that regulate the activities of other genes. Her previous research had shown these transcriptional regulators were implicated in the process of muscle atrophy.

By studying strains of mice bred to be without the nfêb1 gene or without the bcl3 gene, so-called knockout mice, and then comparing knockout results with those from control groups as well as those from genetically unaltered ("wild-type") mice, Kandarian was able to isolate the effects either gene had on triggering atrophy in each of two weight-bearing muscles in the mouse hind limb: the soleus, a so-called slow-fast muscle, and the plantaris, a fast muscle. The differing muscle fiber make-up allowed Kandarian to assess what changes in the muscle’s phenotype were linked to the atrophy process. A slow-to-fast change in phenotype is typical in muscle atrophy.

After 10 days of reduced weight-bearing use, all groups of mice were assessed for changes in muscle fiber size, fiber phenotype, and activation of an injected NF-êB reporter gene. This reporter gene reflects the muscles’ transcriptional activity of the two genes the scientists were studying. Kandarian found that when muscle fiber size of the soleus in knockouts and wild types were compared, knockout mice showed virtually no changes after the long period of disuse. Plantaris muscle fiber size in knockout mice also showed very little atrophy compared to wild type; fiber atrophy was inhibited by 67 percent.

Kandarian also found an absence of a slow-to-fast shift in phenotype in the knockout groups, a shift that remained in the wild type mice, and an absence of NF-êB reporter activity in the muscles of the knockout mice. In comparison, wild type muscles subjected to disuse show a sevenfold increase in NF-êB reporter activity.

The researchers conclude that atrophy associated with prolonged muscular inactivity requires the involvement of nfêb1 and bcl3. Their findings are reported in the latest issue of The Journal of Clinical Investigation. The work was supported by grants from the National Space Biomedical Research Institute and the National Institute of Arthritis and Musculoskeletal and Skin Diseases.

To begin to assess directly just what types of chemical interventions might stall the activity of these genes, Kandarian’s laboratory currently is testing whether NSAIDs such as aspirin can reduce skeletal muscle weakness and loss under the condition of weightlessness. A two-year study led by her research associate, Andrew Judge, seeks to determine whether high-dose aspirin treatment can inhibit muscle fiber atrophy and activation of the NF-êB reporter gene.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>