Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Death clock’ gene hunt success for University of Leicester medical scientists

17.11.2004


Medical scientists at the University of Leicester have announced they have narrowed the search for the ’death clock’ gene in humans. Their study relates to a hunt for a gene that has important implications for aging and cancer as well as other age-related diseases.



The gene controls the length of human telomeres - repeat DNA sequences that cap a chromosome. Each time a human cell divides, the cap shortens. When it gets too short, cells die. Telomere length therefore acts as a ’death clock’
People vary considerably in the length of telomeres they are born with.

The Leicester team, comprising members of the Department of Cardiovascular Sciences, Health Sciences and Genetics linked inter-individual differences in telomere length to a region on Chromosome 12 and identified what they describe as a ’strong candidate’ for the ’death clock’ gene. To help locate the gene, the Leicester researchers examined 383 adults comprising 258 sibling pairs.



The authors state in The American Journal of Human Genetics: "Identification of the gene involved and elucidation of its mechanism of action could have important implications for our understanding of chromosomal assembly, telomere biology, and susceptibility to age-related diseases."

Professor Nilesh Samani, Professor of Cardiology at the University of Leicester, who headed the research team added: "Our interest in this area is linked to our work on coronary heart disease where we have shown that shorter telomere length is associated with coronary atherosclerosis and risk of premature heart attacks. However, telomere biology is relevant to many other conditions, including cancer where telomere length is maintained, and hence finding of a major gene that regulates telomere length and understanding how it works could have wide implications."

In addition to Professor Samani, the research team included Dr Mariuca Vasa-Nicotera, Mr Scott Brouilette, Dr Massimo Mangino, Professor John R Thompson, Mr Peter Braund, Ms Jenny-Rebecca Clemitson, Ms Andrea Mason, Mrs Clare L. Bodycote, Dr Stuart M. Raleigh and Professor Edward Louis.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>