Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool highlights activity of key cellular signal

16.11.2004


Scientists at Johns Hopkins and the University of Texas Medical Branch have created a new tool that easily reveals when and where a key cellular signal is active. The development, described in the early edition of the Proceedings of the National Academy of Sciences, should speed identification of the signal’s triggers and effects in normal processes and in conditions such as asthma, allergy, inflammation, lung disease and heart disease.



The tool -- a special fluorescent protein -- probes the activity of cyclic AMP in living cells and represents biology’s growing application of a fluorescent phenomenon to study the molecular changes that reveal cells’ inner workings. Much like a child might pass along a visitor’s request to a grown-up, cyclic AMP carries messages from hormones or other molecules "knocking" at the cell’s door to proteins inside the cell. But because cyclic AMP uses just a handful of proteins to pass on many messages, scientists have had a hard time figuring out how it can trigger the right cellular response to each one.

"Scientists suspected that timing and location of cyclic AMP activity was important, but there was no easy way to study cyclic AMP inside cells in real time and in real space," says Jin Zhang, Ph.D., senior author of the study and an assistant professor of pharmacology and molecular sciences and of neuroscience in Johns Hopkins’ Institute for Basic Biomedical Sciences. "This new fluorescent protein can be directed to the nucleus or to other parts of the cell, so we can now follow cyclic AMP activity in real time and space."


The new fluorescent protein takes advantage of the fact that fluorescent molecules can "talk" to one another when they are close together, affecting the color of light emitted -- a phenomenon called fluorescent resonance energy transfer (FRET). If the distance between the fluorescent molecules changes, the color of light emitted may change as well.

In the early 1990s, biologists began harnessing this phenomenon to study molecular changes in cells. A team led by Roger Tsien, Ph.D., at the University of California San Diego created the first FRET probe of cyclic AMP activity by attaching small fluorescent molecules to the ends of a protein called PKA. Once activated by cyclic AMP, PKA breaks in two, separating its two fluorescent "caps." The first all-protein fluorescent version of PKA was developed a few years later.

But the PKA-based probes, which Zhang used as a postdoctoral fellow at the University of California San Diego, were difficult to use because PKA is made of four parts. For a simpler and easier to use probe, Lisa DiPilato, now a second-year graduate student in pharmacology, added fluorescent caps -- one cyan, the other yellow -- to a one-piece protein called Epac that is also activated by cyclic AMP.

By using a special microscope to measure how the fluorescence of the probe changed in response to cyclic AMP, DiPilato proved the probe’s ability. Addition of a genetic "address label" then allowed her to direct the fluorescent probe to go to particular places in cells -- keeping it at the cell membrane, sending it to the nucleus, or directing it to the cell’s power plant, the mitochondria. "The probe has already provided new information," says Zhang, who arrived at Hopkins in September 2003. "The probe itself shows that Epac changes shape when it’s activated, which had not been directly observed. And while some scientists had suggested cyclic AMP could get into the mitochondria, our studies are the first to show that it’s there."

Stimulating cyclic AMP production in a human embryonic kidney cell line containing the targeted fluorescent Epac proteins caused an immediate build-up of cyclic AMP and activation of Epac at the cell membrane, where cyclic AMP is produced, the researchers report. Within seconds, build-up of cyclic AMP also began in the cytoplasm of the cell, the nucleus and the mitochondria.

Because cyclic AMP does so many things, understanding how it works has broad implications, says Zhang. For example, the main enzyme that degrades cyclic AMP is being targeted by drug companies for potential application in inflammation, allergy, asthma or chronic lung disease, conditions that may be helped by increasing cyclic AMP. More recently, altered regulation of cyclic AMP has been tied to the risk of stroke occurrence and to heart conditions including dilated cardiomyopathy.

Zhang says her lab will use the new and other fluorescent probes to study the role of cyclic AMP in smooth muscle cells, such as those in blood vessels, in inflammation, and in fat cells, where it may be involved in diabetes-related processes.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>