Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool highlights activity of key cellular signal

16.11.2004


Scientists at Johns Hopkins and the University of Texas Medical Branch have created a new tool that easily reveals when and where a key cellular signal is active. The development, described in the early edition of the Proceedings of the National Academy of Sciences, should speed identification of the signal’s triggers and effects in normal processes and in conditions such as asthma, allergy, inflammation, lung disease and heart disease.



The tool -- a special fluorescent protein -- probes the activity of cyclic AMP in living cells and represents biology’s growing application of a fluorescent phenomenon to study the molecular changes that reveal cells’ inner workings. Much like a child might pass along a visitor’s request to a grown-up, cyclic AMP carries messages from hormones or other molecules "knocking" at the cell’s door to proteins inside the cell. But because cyclic AMP uses just a handful of proteins to pass on many messages, scientists have had a hard time figuring out how it can trigger the right cellular response to each one.

"Scientists suspected that timing and location of cyclic AMP activity was important, but there was no easy way to study cyclic AMP inside cells in real time and in real space," says Jin Zhang, Ph.D., senior author of the study and an assistant professor of pharmacology and molecular sciences and of neuroscience in Johns Hopkins’ Institute for Basic Biomedical Sciences. "This new fluorescent protein can be directed to the nucleus or to other parts of the cell, so we can now follow cyclic AMP activity in real time and space."


The new fluorescent protein takes advantage of the fact that fluorescent molecules can "talk" to one another when they are close together, affecting the color of light emitted -- a phenomenon called fluorescent resonance energy transfer (FRET). If the distance between the fluorescent molecules changes, the color of light emitted may change as well.

In the early 1990s, biologists began harnessing this phenomenon to study molecular changes in cells. A team led by Roger Tsien, Ph.D., at the University of California San Diego created the first FRET probe of cyclic AMP activity by attaching small fluorescent molecules to the ends of a protein called PKA. Once activated by cyclic AMP, PKA breaks in two, separating its two fluorescent "caps." The first all-protein fluorescent version of PKA was developed a few years later.

But the PKA-based probes, which Zhang used as a postdoctoral fellow at the University of California San Diego, were difficult to use because PKA is made of four parts. For a simpler and easier to use probe, Lisa DiPilato, now a second-year graduate student in pharmacology, added fluorescent caps -- one cyan, the other yellow -- to a one-piece protein called Epac that is also activated by cyclic AMP.

By using a special microscope to measure how the fluorescence of the probe changed in response to cyclic AMP, DiPilato proved the probe’s ability. Addition of a genetic "address label" then allowed her to direct the fluorescent probe to go to particular places in cells -- keeping it at the cell membrane, sending it to the nucleus, or directing it to the cell’s power plant, the mitochondria. "The probe has already provided new information," says Zhang, who arrived at Hopkins in September 2003. "The probe itself shows that Epac changes shape when it’s activated, which had not been directly observed. And while some scientists had suggested cyclic AMP could get into the mitochondria, our studies are the first to show that it’s there."

Stimulating cyclic AMP production in a human embryonic kidney cell line containing the targeted fluorescent Epac proteins caused an immediate build-up of cyclic AMP and activation of Epac at the cell membrane, where cyclic AMP is produced, the researchers report. Within seconds, build-up of cyclic AMP also began in the cytoplasm of the cell, the nucleus and the mitochondria.

Because cyclic AMP does so many things, understanding how it works has broad implications, says Zhang. For example, the main enzyme that degrades cyclic AMP is being targeted by drug companies for potential application in inflammation, allergy, asthma or chronic lung disease, conditions that may be helped by increasing cyclic AMP. More recently, altered regulation of cyclic AMP has been tied to the risk of stroke occurrence and to heart conditions including dilated cardiomyopathy.

Zhang says her lab will use the new and other fluorescent probes to study the role of cyclic AMP in smooth muscle cells, such as those in blood vessels, in inflammation, and in fat cells, where it may be involved in diabetes-related processes.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>