Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool highlights activity of key cellular signal

16.11.2004


Scientists at Johns Hopkins and the University of Texas Medical Branch have created a new tool that easily reveals when and where a key cellular signal is active. The development, described in the early edition of the Proceedings of the National Academy of Sciences, should speed identification of the signal’s triggers and effects in normal processes and in conditions such as asthma, allergy, inflammation, lung disease and heart disease.



The tool -- a special fluorescent protein -- probes the activity of cyclic AMP in living cells and represents biology’s growing application of a fluorescent phenomenon to study the molecular changes that reveal cells’ inner workings. Much like a child might pass along a visitor’s request to a grown-up, cyclic AMP carries messages from hormones or other molecules "knocking" at the cell’s door to proteins inside the cell. But because cyclic AMP uses just a handful of proteins to pass on many messages, scientists have had a hard time figuring out how it can trigger the right cellular response to each one.

"Scientists suspected that timing and location of cyclic AMP activity was important, but there was no easy way to study cyclic AMP inside cells in real time and in real space," says Jin Zhang, Ph.D., senior author of the study and an assistant professor of pharmacology and molecular sciences and of neuroscience in Johns Hopkins’ Institute for Basic Biomedical Sciences. "This new fluorescent protein can be directed to the nucleus or to other parts of the cell, so we can now follow cyclic AMP activity in real time and space."


The new fluorescent protein takes advantage of the fact that fluorescent molecules can "talk" to one another when they are close together, affecting the color of light emitted -- a phenomenon called fluorescent resonance energy transfer (FRET). If the distance between the fluorescent molecules changes, the color of light emitted may change as well.

In the early 1990s, biologists began harnessing this phenomenon to study molecular changes in cells. A team led by Roger Tsien, Ph.D., at the University of California San Diego created the first FRET probe of cyclic AMP activity by attaching small fluorescent molecules to the ends of a protein called PKA. Once activated by cyclic AMP, PKA breaks in two, separating its two fluorescent "caps." The first all-protein fluorescent version of PKA was developed a few years later.

But the PKA-based probes, which Zhang used as a postdoctoral fellow at the University of California San Diego, were difficult to use because PKA is made of four parts. For a simpler and easier to use probe, Lisa DiPilato, now a second-year graduate student in pharmacology, added fluorescent caps -- one cyan, the other yellow -- to a one-piece protein called Epac that is also activated by cyclic AMP.

By using a special microscope to measure how the fluorescence of the probe changed in response to cyclic AMP, DiPilato proved the probe’s ability. Addition of a genetic "address label" then allowed her to direct the fluorescent probe to go to particular places in cells -- keeping it at the cell membrane, sending it to the nucleus, or directing it to the cell’s power plant, the mitochondria. "The probe has already provided new information," says Zhang, who arrived at Hopkins in September 2003. "The probe itself shows that Epac changes shape when it’s activated, which had not been directly observed. And while some scientists had suggested cyclic AMP could get into the mitochondria, our studies are the first to show that it’s there."

Stimulating cyclic AMP production in a human embryonic kidney cell line containing the targeted fluorescent Epac proteins caused an immediate build-up of cyclic AMP and activation of Epac at the cell membrane, where cyclic AMP is produced, the researchers report. Within seconds, build-up of cyclic AMP also began in the cytoplasm of the cell, the nucleus and the mitochondria.

Because cyclic AMP does so many things, understanding how it works has broad implications, says Zhang. For example, the main enzyme that degrades cyclic AMP is being targeted by drug companies for potential application in inflammation, allergy, asthma or chronic lung disease, conditions that may be helped by increasing cyclic AMP. More recently, altered regulation of cyclic AMP has been tied to the risk of stroke occurrence and to heart conditions including dilated cardiomyopathy.

Zhang says her lab will use the new and other fluorescent probes to study the role of cyclic AMP in smooth muscle cells, such as those in blood vessels, in inflammation, and in fat cells, where it may be involved in diabetes-related processes.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>