Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular technique shows promise in destroying drug resistance in bacteria

15.11.2004


A new approach to outwit resistance to antibiotics has been discovered by a team of researchers at the University of Illinois at Urbana-Champaign.



By inserting a naturally occurring molecule into an antibiotic-resistant bacterium, the team was able to gradually destroy the machinery responsible for the resistance. "Multidrug-resistant bacteria are now ubiquitous in both hospital settings and the larger community," wrote Paul J. Hergenrother, a professor of chemistry, in a paper that appeared online ahead of publication in the Journal of the American Chemical Society. "Clearly, new strategies and targets are needed to combat drug-resistant bacteria."

Antibiotic resistance makes it difficult to fight infection and increases the chance of acquiring one while in a hospital. That, in turn, has led to more deaths from infection, longer hospital stays and a greater use of more toxic and expensive drugs, according to the National Institutes of Health.


Resistance occurs when bacteria develop ways to make themselves impervious, such as by pumping antibiotics out of the cell, preventing them from entering the cell or demolishing them. A common way bacteria develop resistance is by laterally transferring plasmids -- pieces of extra-chromosomal DNA -- from one bacterium to another. These plasmids contain genetic codes for proteins that make bacteria insensitive to antibiotics. "Our idea was that if you could eliminate plasmids that make the bacterium resistant, then the bacterium could be sensitive to antibiotics again," Hergenrother said. The researchers’ approach was to use a natural process called plasmid incompatibility. "If there is one plasmid in a cell and another one is introduced, then they compete with each other for resources," Hergenrother said. "One of them wins and the other is eliminated."

With the help of chemistry graduate students Johna C.B. DeNap, Jason R. Thomas and Dinty J. Musk, Hergenrother developed a technique that mimicked plasmid incompatibility by incubating bacteria containing plasmids with a specific compound -- in this case an aminoglycoside called apramycin that binds to plasmid-encoded RNA and prevents proper plasmid reproduction.

Apramycin was chosen after numerous potential aminoglycosides -- a group of antibiotics effective against gram-negative bacteria -- were tested to find those that bind tightly to the target plasmids. Positively charged apramycin bound to negatively charged plasmid-encoded RNA, which allowed apramycin to prevent the actions of the protein that triggers plasmid reproduction. By thwarting that protein, apramycin blocked plasmid replication.

The apramycin treatment was applied to bacterial cultures that were grown for 250 generations. By the end of the experiment, the plasmids no longer were present, making it possible for antibiotics to work. "This is the first demonstration of a mechanistic-based approach to systematically eliminate the plasmids," Hergenrother said. "Standard antibiotics target the cell wall, but as resistance to antibiotics emerges, there needs to be other targets. We validated that plasmids as a new target for antibiotics."

Further studies are needed to identify whether apramycin is useful against the plasmids occurring in different strains of antibiotic-resistant bacteria. It is possible that other compounds may be needed to target specific plasmids, Hergenrother said. Future studies in his lab will investigate those questions.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>