Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Therapy: the Search for the Safe and Gentle Method

09.11.2004


Scientists from three countries study innovative DNA transport element



Treating genetic diseases by introducing functional genes into the human organism: researchers from three European countries are aiming for a breakthrough in this process, known as gene therapy, using a new methodology. The network of scientists, including the German Research Centre for Biotechnology in Braunschweig (GBF), is working to further develop a certain type of DNA element, called an episome, for this purpose. The European Union is contributing financial support for the “Epi-Vector-Programme.”

During the 1990s great promise for gene therapy emerged for the first time. At this time, bio-scientists and others from the medical profession first attempted to treat people with hereditary defects by implanting a functional version of a damaged gene into the patient’s body. The initial high hopes for this process were cruelly disappointed when several of the patients contracted cancer and died.


Professor Jürgen Bode, the work group leader at GBF, is convinced that the cause of these deaths can be found in the vectors used at the time; i.e the transport elements by which the DNA was injected into a patient’s cells. “Certain viruses that were rendered harmless were used,” notes Prof. Bode, “into whose genetic substance the desired gene was integrated.” “This,” Bode explains, “was essentially a sensible approach because viruses inject their own DNA into the cells they attack; in fact, they do this at those points where it is most convenient for their own survival. Then, they let themselves be reproduced by our own cells.” The downside is that unfortunately we have no control over the location where this occurs on our chromosomes, says Bode. If a virus invades a key genetic region of a cell it can severely inhibit the functions of genetic information. In the worst case scenario, this can lead to the breakdown and loss of genes which, in turn, can result in cancer.

The GBF and the rest of the research consortium are focusing on a new type of vector called an episome. Episomes are DNA elements that do not combine themselves in the genetic substance of the host DNA. Instead, they become anchored in a reversible manner only to certain support molecules in the nucleus of the cell – the same molecules used for stabilisation by human DNA. The necessary “DNA anchors” were identified during the Human Genome Project. “Now it is possible,” says Prof. Bode, “to head straight for the stabilisation of cell nucleus molecules.” The episomes constructed are independent DNA ring molecules which have attached themselves to a chromosome in the host cell. Their information is jointly read with that of the chromosomes and together they multiply with the chromosomes every time cell division occurs.

Researchers in the Epi-Vector-Project now want to find out if episomes are suitable for a gentler form of gene therapy. Professor Bode warns however that quick successes are not likely. “Even if this method functions, considerable groundwork would still be required before the process could be applied in the medical field.”

More about the Epi-Vector-Programme

Participants in the EU-supported research programme “Episomal Vectors for Human Gene Therapy” include seven scientific institutes from Germany, England and the Netherlands. The German project partners are the universities of Witten and Hamburg, and the GBF in Braunschweig. Coordinator of the project is the molecular biologist, Dr. Dean Jackson, in Manchester/UK.

Manfred Braun | alfa
Further information:
http://www.gbf.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>