Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compounds effective against Alzheimer’s disease onset and progression

09.11.2004


Drug discovery researchers at Northwestern University have developed a new class of compounds that have the potential to reduce the inflammation of brain cells and the neuron loss associated with Alzheimer’s disease.



The new class of compounds are aminopyridazines. The original compound, called MW01-070C, is used in an injectable form. More recently developed compounds, such as MW01-2-151WH and MW01-5-188WH, can be taken by mouth.

The compounds were designed and synthesized in the laboratory of D. Martin Watterson, J. G. Searle Professor of Molecular Biology and Biochemistry and professor of molecular pharmacology and biological chemistry, Northwestern University Feinberg School of Medicine, using a synthetic chemistry platform developed by the Northwestern Drug Discovery Program for the rapid discovery of new potential therapeutic targets.


The aminopyridazines are targeted for the potential treatment of certain neurodegenerative diseases that are characterized by neuroinflammation and neuronal loss, such as Alzheimer’s disease, Parkinson’s disease, stroke and traumatic brain injury. The compounds inhibit over-activation of glia, important cells of the central nervous system that normally help the body mount a response to injury or developmental change but are overactivated in certain neurodegenerative diseases.

The efficacy and safety of the compounds in an Alzheimer’s disease animal model was evaluated in collaboration with Linda J. Van Eldik, professor of cell and molecular biology at Feinberg.

The scientists described their Alzheimer’s disease drug discovery efforts in recent issues of the Journal of Molecular Neuroscience and the journal Neurobiology of Aging, and a publication that will appear in early 2005 in the journal Current Alzheimer Research. The studies have important implications for future drug development because they provide a proof of concept that targeting neuroinflammation with aminopyridazines is a viable Alzheimer’s disease drug discovery approach that has the potential to modulate disease onset and progression, Van Eldik said.

Deposition of the beta-amyloid plaques and neurofibrillary tangles of Alzheimer’s disease is associated with glial activation, loss of neurons and decline of cognitive function. Long-term or excessive activation of glia increases production of chemokines and cytokines, such as interleukin-1 beta (IL-1b), and oxidative stress-related enzymes, such as a highly active form of nitric oxide synthase (iNOS). The excessive production of the inflammation-related substances can, in turn, contribute to further exacerbation of the disease process.

IL-1b is involved in glial inflammatory and neuronal dysfunction responses, and variants of the IL-1 gene are associated with increased risk for Alzheimer’s disease. The iNOS induced as a result of glial activation generates nitric oxide (NO), which can exist in toxic forms that damage neurons. Therefore, development of new compounds that can modulate these disease-linked biological processes may represent alternative therapeutic approaches and lead to future identification of new drug discovery targets, Van Eldik said.

Van Eldik and co-researchers found that the aminopyridazines inhibited both oxidative and inflammatory cytokine pathways and reduced human amyloid beta (Ab)-induced glial activation in a mouse specially designed to develop many of the hallmarks of Alzheimer’s disease pathology, including neuroinflammation, neuronal and synaptic degeneration and amyloid disposition, often called plaques.

Inhibition of neuroinflammation correlated with a decreased neuron loss, restoration towards control levels of synaptic dysfunction biomarkers in the hippocampus and diminished amyloid plaque deposition. Consistent with the pathology changes, treatment with the aminopyridazines also attenuated behavioral deficits in the mice that are due to injury in the part of the brain called the hippocampus, a region that is gradually destroyed in neurodegenerative diseases such as Alzheimer’s. The Northwestern investigators are now seeking to raise the funding necessary for testing in humans.

Collaborating with Watterson and Van Eldik on this research were Jeffrey M. Craft, a medical scientist predoctoral student in the Drug Discovery Training Program, and Wenhui Hu and Hantamalala Ranay Ranaivo, postdoctoral scholars in the Drug Discovery Training Program.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>