Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Longterm immune memory cells cells do not develop during chronic viral infections

08.11.2004


Finding by Emory University scientists has implications for vaccines, antiviral therapies and cancer treatment



Immune T cells that respond to chronic viral infections do not acquire the same "memory" capabilities of T cells that respond to acute viral infections, according to research by scientists at Emory University. The finding may explain why people lose their immunity to some viruses after chronic infections are controlled. It could guide scientists in developing better therapeutic combinations of antiviral therapies and therapeutic vaccines. The research is published online in the Proceedings of the National Academy of Sciences.

Lead author of the study is E. John Wherry, PhD, postdoctoral fellow in the Department of Microbiology and Immunology at Emory University School of Medicine and the Emory Vaccine Center. Senior author is Rafi Ahmed, PhD, director of the Emory Vaccine Center, Georgia Research Alliance Eminent Scholar, and professor of microbiology and immunology.


The immune system responds to viral infections in two ways: with antibodies that help prevent viruses from entering cells and with T cells activated in response to viral antigens. T cells kill the virus-infected cells and produce proteins called cytokines that prevent the growth of viruses and make cells resistant to viral infection. During the acute phase of a viral infection, activated CD8 T cells respond aggressively for a few weeks, then about five percent of them become "memory cells" that maintain a stable memory T cell population by slow, steady turnover. These memory cells are poised to mount an even stronger and more rapid response to future attacks by the same virus. Individuals who acquire immunity to diseases such as measles, yellow fever, smallpox, or polio, either through exposure or vaccination, often are capable of retaining that immunity for many years or for an entire lifetime.

Dr. Ahmed and his colleagues discovered in previous research that following acute viral infections, immune memory CD8 T cells continue to maintain their ability to attack viruses even when they are not continuously stimulated by viral antigen (Science, Nov. 12, 1999). Other studies have suggested, however, that during some chronic infections continuing exposure to viral antigen may be necessary to maintain protective immunity.

The Emory researchers used a mouse model of infection with lymphocytic choriomeningitis virus (LCMV) to study the differences in CD8 memory T cell immune response following acute and chronic infections. In mice with the acute infection, the virus was cleared by a CD8 T cell immune response within one week. In mice with the chronic infection, high virus levels were present in multiple tissues for the first two to three months, then the virus was controlled in most tissues by a T cell response but was not completely eliminated.

To directly compare the memory capabilities of cells from both types of infection, the scientists transferred both acute memory and chronic memory CD8 T cells into uninfected mice, without transferring any of the viral antigen. The acute memory cells were maintained through homeostasis and divided several times, but the chronic memory cells failed to divide and declined in number over time. When the chronic memory CD8 T cells were transferred back into chronically infected mice where they re-encountered antigen, the cells began to recover.

The scientists also compared other important qualities of memory T cells, including the responsiveness to cytokine signaling by interleukin 7 (IL-7) and interleukin 15 (IL-15). Response to these cytokines is a critical part of the immune pathway that allows memory CD8 T cells to undergo homeostatic division and to persist even in the absence of viral antigen. They found that chronic memory CD8 T cells responded poorly to both IL-7 and IL-15, whereas acute memory CD8T cells proliferated in response to both cytokines. Additional research could show whether the defect in chronic memory cell response to IL-7 and IL-15 can be overcome by increasing the expression of these cytokines, or whether other deficiencies in the pathway exist.

"The normal memory CD8 T cell differentiation program that occurs after acute infection results in memory cells that are capable of long-term persistence in the absence of antigen as a result of slow homeostatic proliferation in response to IL-7 and IL-15," said Dr. Ahmed. "We have shown that during chronic LCMV infection this memory pathway does not proceed efficiently and that virus-specific CD8 T cells do not acquire the cardinal property of antigen-independent persistence."

The Emory scientists also concluded that rest from antigen exposure is an important criterion for developing long-term immune memory. Acute memory T cells are exposed to antigen for a finite time period after an acute infection, then after the virus with antigen is eliminated, these cells differentiate into memory T cells. A recent study of HIV infection showed that if antiretroviral therapy is initiated during the early phase of infection, HIV-specific CD8 T cells are maintained more efficiently.

"Our research shows that prolonged exposure to antigen without any rest results in cells that are "addicted" to antigen and cannot persist without it," Dr. Ahmed explains. "This raises concerns about vaccine strategies that use persisting antigen, because antigen-independent memory T cells may not develop."

The study may help explain the loss of T cell immunity seen in some chronic infections that are eventually controlled and eliminated, and the ability of some persistent tumors to provide protection from a secondary tumor challenge if the original tumor is not removed. "Giving T cells a rest by terminating exposure to viral antigen simulation following the acute phase of infection seems to be necessary if T cells are to differentiate into long-term antigen-independent memory T cells," Dr. Ahmed says. "Therapeutic vaccine approaches that provide antigen re-stimulation during persistent infections may not allow the ability for memory T-cell proliferation. However, antiviral therapy or cancer chemotherapy may provide rest from antigen stimulation and allow partial recovery of some memory T cell functions. By combining drug treatment with therapeutic vaccination or cytokine therapies we may be able to prevent loss of T cell memory and establish long-term protective immunity."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>