Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell’s tiny, vibrating paddle oscillator senses the mass of a virus

05.11.2004


By using a device only six-millionths of a meter long, researchers at Cornell University have been able to detect the presence of as few as a half-dozen viruses -- and they believe the device is sensitive enough to notice just one.



The research could lead to simple detectors capable of differentiating between a wide variety of pathogens,i ncluding viruses, bacteria and toxic organic chemicals. The experiment, an extension of earlier work in which similar devices were used to detect the mass of a single bacterium, is reported in a paper, "Virus detection using nanoelectromechanical devices," in the September 27, 2004, issue ofApplied Physics Letters by Cornell research associate Rob Ilic of the Cornell NanoScale Facility (CNF), Yanou Yang, a Cornell graduate student in biomedical engineering, and Harold Craighead, Cornell professor of applied and engineering physics. The work was done with the assistance of Michael Shuler, Cornell professor of chemical and biological engineering, and microbiologist Gary Blissard of the Boyce Thompson Institute for Plant Research on the Cornell campus.

At CNF, the researchers created arrays of tiny silicon paddles from 6 to 10 micrometers (millionths of a meter) long, half a micrometer wide, and about 150 nanometers (billionths of a meter) thick, with a one-micrometer square pad at the end. Think of a tiny fly-swatter mounted by its handle like a diving board. A large array of paddles were mounted on a piezoelectric crystal that can be made to vibrate at frequencies on the order of 5 to 10 megaHertz (mHz). The experimenters then varied the frequency of vibration of the crystal. When it matched the paddles’ resonant frequency, the paddles began to vibrate, as measured by focusing a laser on the paddles and noting the change in reflected light, a process called optical interferometry.


The natural resonant frequency at which something vibrates depends on, among other things, its mass. A thick, heavy guitar string, for example, vibrates at a lower tone than a thin, light one. A single one of these silicon paddle weighs about 1.2 picograms, and vibrates at frequencies in the neighborhood of 10 megaHertz. The virus used in the experiment weighs about 1.5 femtograms. (A picogram is 1/1,000,000,000,000th of a gram, and a femtogram is 1/1000th of a picogram.) Adding just a few virus particles to a paddle turns out to be enough to change its resonant frequency by about 10 kiloHertz (kHz), which is easily observable.

To trap viruses, the researchers coated the paddles with antibodies specific to Autographa californica nuclear polyhedrosis virus, a nonpathogenic insect baculovirus widely used in research. The paddle arrays were then bathed in a solution containing the virus, causing virus particles to adhere to the antibodies. Because air damps the vibration and greatly reduces the "Q," or selectivity, of the system, the treated paddles were placed in a vacuum for testing. From the frequency shift of about 10 kHz the researchers calculated that an average of about six virus particles had adhered to each paddle. It might be possible, the researchers say, to demonstrate detection of single particles by further diluting the virus solution. The system also can differentiate between various virus concentrations, they say.

As expected, the smallest paddles were the most sensitive. The researchers calculated that the minimum detectable mass for a six-micrometer paddle would be .41 attograms (an attogram is 1/1000th of a femtogram.) This opens the possibility that the method could be used to detect individual organic molecules, such as DNA or proteins.

Other members of the Craighead Research Group at Cornell have experimented with "nanofluidics," creating microscopic channels on silicon chips through which organic molecules can be transported, separated or even counted. Ilic speculates that a simple field detector for pathogens -- the much-heralded "laboratory on a chip" -- could be built by combining a paddle oscillator detector with a nanofluidic system that would bathe the paddles in a suspect sample, then automatically evacuate the chamber to a vacuum for testing. Arrays of paddles coated with various antibodies could allow testing for a wide variety of pathogens at the same time.

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu
http://www.hgc.cornell.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>