Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell’s tiny, vibrating paddle oscillator senses the mass of a virus

05.11.2004


By using a device only six-millionths of a meter long, researchers at Cornell University have been able to detect the presence of as few as a half-dozen viruses -- and they believe the device is sensitive enough to notice just one.



The research could lead to simple detectors capable of differentiating between a wide variety of pathogens,i ncluding viruses, bacteria and toxic organic chemicals. The experiment, an extension of earlier work in which similar devices were used to detect the mass of a single bacterium, is reported in a paper, "Virus detection using nanoelectromechanical devices," in the September 27, 2004, issue ofApplied Physics Letters by Cornell research associate Rob Ilic of the Cornell NanoScale Facility (CNF), Yanou Yang, a Cornell graduate student in biomedical engineering, and Harold Craighead, Cornell professor of applied and engineering physics. The work was done with the assistance of Michael Shuler, Cornell professor of chemical and biological engineering, and microbiologist Gary Blissard of the Boyce Thompson Institute for Plant Research on the Cornell campus.

At CNF, the researchers created arrays of tiny silicon paddles from 6 to 10 micrometers (millionths of a meter) long, half a micrometer wide, and about 150 nanometers (billionths of a meter) thick, with a one-micrometer square pad at the end. Think of a tiny fly-swatter mounted by its handle like a diving board. A large array of paddles were mounted on a piezoelectric crystal that can be made to vibrate at frequencies on the order of 5 to 10 megaHertz (mHz). The experimenters then varied the frequency of vibration of the crystal. When it matched the paddles’ resonant frequency, the paddles began to vibrate, as measured by focusing a laser on the paddles and noting the change in reflected light, a process called optical interferometry.


The natural resonant frequency at which something vibrates depends on, among other things, its mass. A thick, heavy guitar string, for example, vibrates at a lower tone than a thin, light one. A single one of these silicon paddle weighs about 1.2 picograms, and vibrates at frequencies in the neighborhood of 10 megaHertz. The virus used in the experiment weighs about 1.5 femtograms. (A picogram is 1/1,000,000,000,000th of a gram, and a femtogram is 1/1000th of a picogram.) Adding just a few virus particles to a paddle turns out to be enough to change its resonant frequency by about 10 kiloHertz (kHz), which is easily observable.

To trap viruses, the researchers coated the paddles with antibodies specific to Autographa californica nuclear polyhedrosis virus, a nonpathogenic insect baculovirus widely used in research. The paddle arrays were then bathed in a solution containing the virus, causing virus particles to adhere to the antibodies. Because air damps the vibration and greatly reduces the "Q," or selectivity, of the system, the treated paddles were placed in a vacuum for testing. From the frequency shift of about 10 kHz the researchers calculated that an average of about six virus particles had adhered to each paddle. It might be possible, the researchers say, to demonstrate detection of single particles by further diluting the virus solution. The system also can differentiate between various virus concentrations, they say.

As expected, the smallest paddles were the most sensitive. The researchers calculated that the minimum detectable mass for a six-micrometer paddle would be .41 attograms (an attogram is 1/1000th of a femtogram.) This opens the possibility that the method could be used to detect individual organic molecules, such as DNA or proteins.

Other members of the Craighead Research Group at Cornell have experimented with "nanofluidics," creating microscopic channels on silicon chips through which organic molecules can be transported, separated or even counted. Ilic speculates that a simple field detector for pathogens -- the much-heralded "laboratory on a chip" -- could be built by combining a paddle oscillator detector with a nanofluidic system that would bathe the paddles in a suspect sample, then automatically evacuate the chamber to a vacuum for testing. Arrays of paddles coated with various antibodies could allow testing for a wide variety of pathogens at the same time.

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu
http://www.hgc.cornell.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>