Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify molecular markers of aging

05.11.2004


Researchers at the University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center may have made a crucial discovery in the understanding of cellular aging.



In a study published in the Nov. 1 issue of the Journal of Clinical Investigation, the researchers report that as cells and tissues age, the expression of two proteins called p16INK4a and ARF dramatically increases. This increase in expression, more than a hundredfold in some tissues, suggests a strong link between cellular aging and the upregulation, or increased production, of p16INK4a and ARF.

"At the very least, our work suggests that looking at the expression of one or both proteins will make a great biomarker of aging - a tool to clinically determine the actual molecular age of people, as opposed to just their chronological age," said Lineberger member Dr. Norman Sharpless, the senior author of the study and assistant professor of medicine and genetics at UNC’s School of Medicine. "We all know people that we consider to be a young 65, and we believe they won’t demonstrate as much p16INK4a or ARF expression as others of the same age."


In addition to identifying molecular targets that may slow aging in the future, the study may also suggest immediate clinical applications. Knowing the molecular age of a tissue may also enable physicians to select the "youngest" most viable tissues and organs for transplantation, to predict how well a patient will heal after surgery and, by being able to characterize the regenerative ability of a patient’s bone marrow, predict future toxicity of chemotherapy in a cancer patient.

Both p16INK4a and ARF are known potent tumor suppressors, or proteins that halt tumor cell growth. The study suggests that the important anti-cancer function of these proteins to limit cellular growth might in turn cause aging. "Proliferation of cells is important in the repair and regrowth of tissues. In fact, we grow old in part because our bodies’ ability to regenerate tissues decreases as we age," Sharpless said. "We believe an untoward effect of increased p16INK4a and ARF expression outside of cancer is a decrease in cellular proliferation needed to sustain this regeneration."

The researchers also found that the increase in p16INK4a and ARF can be substantially inhibited by decreasing caloric intake, a known retardant of aging. This result suggests that decreased expression of p16INK4a and ARF could mediate the known anti-aging effects of caloric restriction. "Our results suggest that going on a short-term diet will not reverse the aging process; only long-term restrictions appeared to have an effect on p16INK4a and ARF expression. Therefore, our results would not be consistent with the idea that short-term caloric restriction prior to surgery would improve post-operative wound healing," Sharpless said.

The work has strong implications for stem cell renewal, he added. Stem cells are self-replenishing cells that constantly divide and differentiate into the component cells that make up the tissues in the human body and are found in particularly high number in the bone marrow, as well as organs such as the skin, kidney and liver. "As tissue stem cells age, they appear to express more p16INK4a and ARF, which would stop those cells from replenishing," Sharpless said. "As people age, they could just run out of functioning stem cells."

Depletion of stem cells could affect the ability of the body to heal after injury or surgery and may also predict the ability of certain diseases, such as cardiomyopathy, to progress," he added.

Along with Sharpless, study co-authors from UNC Lineberger are postdoctoral researchers Drs. Janakiraman Krishnamurthy and Grigoriy Kovalev, research technician Chad Torrice, graduate student Matthew Ramsey, and UNC Lineberger member Dr. Lishan Su, also associate professor of microbiology and immunology. Co-author Dr. Khalid Al-Regaiey is from Southern Illinois University’s departments of physiology and internal medicine.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>