Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify molecular markers of aging

05.11.2004


Researchers at the University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center may have made a crucial discovery in the understanding of cellular aging.



In a study published in the Nov. 1 issue of the Journal of Clinical Investigation, the researchers report that as cells and tissues age, the expression of two proteins called p16INK4a and ARF dramatically increases. This increase in expression, more than a hundredfold in some tissues, suggests a strong link between cellular aging and the upregulation, or increased production, of p16INK4a and ARF.

"At the very least, our work suggests that looking at the expression of one or both proteins will make a great biomarker of aging - a tool to clinically determine the actual molecular age of people, as opposed to just their chronological age," said Lineberger member Dr. Norman Sharpless, the senior author of the study and assistant professor of medicine and genetics at UNC’s School of Medicine. "We all know people that we consider to be a young 65, and we believe they won’t demonstrate as much p16INK4a or ARF expression as others of the same age."


In addition to identifying molecular targets that may slow aging in the future, the study may also suggest immediate clinical applications. Knowing the molecular age of a tissue may also enable physicians to select the "youngest" most viable tissues and organs for transplantation, to predict how well a patient will heal after surgery and, by being able to characterize the regenerative ability of a patient’s bone marrow, predict future toxicity of chemotherapy in a cancer patient.

Both p16INK4a and ARF are known potent tumor suppressors, or proteins that halt tumor cell growth. The study suggests that the important anti-cancer function of these proteins to limit cellular growth might in turn cause aging. "Proliferation of cells is important in the repair and regrowth of tissues. In fact, we grow old in part because our bodies’ ability to regenerate tissues decreases as we age," Sharpless said. "We believe an untoward effect of increased p16INK4a and ARF expression outside of cancer is a decrease in cellular proliferation needed to sustain this regeneration."

The researchers also found that the increase in p16INK4a and ARF can be substantially inhibited by decreasing caloric intake, a known retardant of aging. This result suggests that decreased expression of p16INK4a and ARF could mediate the known anti-aging effects of caloric restriction. "Our results suggest that going on a short-term diet will not reverse the aging process; only long-term restrictions appeared to have an effect on p16INK4a and ARF expression. Therefore, our results would not be consistent with the idea that short-term caloric restriction prior to surgery would improve post-operative wound healing," Sharpless said.

The work has strong implications for stem cell renewal, he added. Stem cells are self-replenishing cells that constantly divide and differentiate into the component cells that make up the tissues in the human body and are found in particularly high number in the bone marrow, as well as organs such as the skin, kidney and liver. "As tissue stem cells age, they appear to express more p16INK4a and ARF, which would stop those cells from replenishing," Sharpless said. "As people age, they could just run out of functioning stem cells."

Depletion of stem cells could affect the ability of the body to heal after injury or surgery and may also predict the ability of certain diseases, such as cardiomyopathy, to progress," he added.

Along with Sharpless, study co-authors from UNC Lineberger are postdoctoral researchers Drs. Janakiraman Krishnamurthy and Grigoriy Kovalev, research technician Chad Torrice, graduate student Matthew Ramsey, and UNC Lineberger member Dr. Lishan Su, also associate professor of microbiology and immunology. Co-author Dr. Khalid Al-Regaiey is from Southern Illinois University’s departments of physiology and internal medicine.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>