Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists pinpoint flaw, offer new promise for stroke treatment


The best treatment doctors currently have for stroke can accelerate the death of brain cells in addition to dissolving blood clots, researchers report in the journal Nature Medicine. But they also found good news: Another drug currently used to treat patients with severe sepsis counters the harmful effects, offering the possibility that a combination of two already-approved drugs might offer a powerful new stroke treatment that would give doctors a bigger window of time to treat patients.

The work is the result of a longstanding collaboration between scientists at the University of Rochester Medical Center and counterparts at Scripps Research Institute in La Jolla, Calif. The team found that the clot-buster tPA (tissue plasminogen activator) can magnify the harmful effects of stroke in mice and in human cells, and that a compound known as APC (activated protein C) counters the harmful effects. "TPA has been a great therapy for some patients, but right now it’s available to a tiny minority of patients. We hope to extend the window of opportunity that tPA could be given, by protecting the brain against its toxic effects," says Berislav Zlokovic, M.D., Ph.D., the Rochester neuroscientist who led the research thanks to funding from the National Heart, Lung and Blood Institute. "This holds great promise for stroke therapy."

TPA is best known as a clot buster useful for patients who have the most common type of stroke, where a blood clot blocks blood flow to a portion of the brain, cutting off oxygen. The trauma causes more and more brain cells to die as they try to cope with the damage. The result can be a devastating brain injury that incapacitates the person for life.

TPA can prevent the damage by dissolving the clot and restoring the flow of oxygen – but the drug must be given to patients within three hours of the onset of stroke symptoms. That’s a big reason why just a tiny fraction of patients benefit from the drug: Zlokovic estimates that the drug reaches only about three percent of patients who are eligible, and of those, not everyone benefits. The window of opportunity is so short largely because tPA is capable of doing additional damage if not given immediately. While doctors know that tPA can cause damage, the Rochester and Scripps team observed more extensive damage than expected.

The team identified the specific molecular signals that enable tPA to enhance the damage done by stroke. TPA kills neurons and endothelial cells, the specialized cells that line our blood vessels, by accelerating a process known as apoptosis or programmed cell death. In both human cells as well as the brains of mice, the team showed that tPA activates an enzyme called caspase-8, which goes on to activate caspase-3, which lays waste to a cell’s nucleus. "This study sheds a lot of light on why tPA is not as effective as it could be. TPA is tremendous at opening up blood vessels, but problems with toxicity diminish the positive effects," says Zlokovic, who is professor in the Department of Neurosurgery and director of the Frank P. Smith Laboratories for Neuroscience and Neurosurgical Research at the University of Rochester Medical Center. The study will be published in the December issue of Nature Medicine and was published on-line November 1.

Most of the experiments outlined in the paper were done by research assistant professors Dong Liu, Tong Cheng, and Huang Guo of the Department of Neurosurgery – the three share credit as first authors of the paper. Also contributing from Scripps were John Griffin, Ph.D., professor of molecular and experimental medicine, an APC expert whose laboratory provided mouse APC for the study, as well as staff member Jose Fernandez, M.D., Ph.D. of Scripps, and technician Xiaomei Song of Rochester.

The team found that tPA not only causes bleeding by damaging the blood vessel lining – increased bleeding is one of the main risks that limits tPA use – but it also seeps out of the damaged blood vessels, breaking through the blood-brain barrier and killing the brain’s neurons directly. It’s a little bit like a powerful drain cleaner that not only clears out a clog in a pipe but also eats through the pipe and then damages nearby structures. "TPA is a two-edged sword capable of both beneficial and harmful effects when given for ischemic stroke," says Griffin.

The administration of tPA boosted the percentage of cells that were marked for death dramatically. In human brain blood-vessel cells subjected to hypoxia or a shortage of oxygen, the stroke conditions alone killed 60 percent of cells, but when tPA was added, all the cells died. Similarly, in mice, tPA nearly doubled the number of neurons marked for death from stroke (from 32 to 60 percent) and more than tripled the number of cells in blood vessels that were undergoing apoptosis (from 14 to 50 percent). The addition of tPA also boosted the level of caspase-3, which chews up the insides of cells, more than doubling in human brain cells and nearly doubling in mouse neurons.

Then the researchers showed that APC counters the harmful effects of tPA remarkably. In human brain cells in culture, APC reduced the number of cells marked for death by 80 percent. Mice that received APC and tPA had 85 percent less brain damage from stroke as mice that received tPA but not APC, and in mice APC completely countered the harmful effects of tPA, bringing the level of "apoptotic" cells down to pre-tPA levels. The levels of the harmful molecules caspase-3 and caspase-8 were also cut dramatically in mice that received APC. "This work combines two FDA-approved drugs in the setting of a major challenge: ischemic stroke," says Griffin. "In the last 10 years, no other drug has been approved for stroke, and in the last 15 years, no other drug has been approved for severe sepsis. Perhaps these drugs could be co-administered to give maximum beneficial effect to patients. It’s incredibly exciting."

The results are the latest in the team’s research into the basic properties of APC. Previously the researchers have shown that APC reduces inflammation after stroke and protects neurons under stress. Rochester neurologist Curtis Benesch, M.D., has received approval from the U.S. Food & Drug Administration to test APC as a new investigational drug in patients who have had a stroke and who are treated within six hours. If APC is safe for patients and is effective, further tests are likely.

Tom Rickey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>