Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish-Chinese research team uncovers the history of the nose

04.11.2004


Our ancestors had two nostrils, one front and one back, but no opening on the palate or in the throat. They could smell, but not breathe with their nose. How did our nose evolve? Per Ahlberg, Uppsala university, and Zhu Min, department of Vertebrate Paleontology in Beijing, China, has now found a fossil that explains the history of the nose.



Have you ever wondered, taking a deep breath of fresh autumn air and sensing how the smell of wet leaves tickles your nose, just how it came about that you can do so? We humans take it for granted that our nose forms a passage between the world around us and our windpipe, but this hasn’t always been the case. We land-based vertebrates or “tetrapods” (mammals, birds, reptiles, and amphibians) originally descend from fish, and fish cant breathe through their nose. On the side of a fish’s head there are two nostrils, one front and one back, that form the opening to a little sac containing the olfactory organs: water flows in through the front nostril and out through the back one, but there is no connection whatsoever to the throat. In other words, fish can smell with their nose, but not breathe.

We tetrapods may have only one external nostril on each side of our head, but we do have an inner nostril or “choana” that opens on the palate or in the throat. This is what makes it possible for us to breathe through our nose. But how did this inner nostril evolve? One thing all scientists agree about is that the front nostril in fish corresponds to our single outer nostril: the question is whether the back nostril was transformed into our choana by “migrating” to the palate, or whether the choana is a new opening that arose with tetrapods.


The answer to that question is of importance to a greater issue, namely, how large-scale evolution actually functions. This is the part of evolution that is perhaps most difficult to understand. Its easy for us to imagine how evolution deals with small steps, like developing a blue tit and a great titmouse from a common ancestor (this merely involves small details in plumage and size), but how does a nostril move from the face to the palate? Some scientists have claimed that it is impossible for an outer nostril to gradually migrate to the palate, since a “cord” of nerves and blood vessels runs just inside the row of teeth that the nostril would have to sever during its migration. The “cord” is in evidence both in fish and tetrapods, so it appears that nothing has happened to it during our evolution.

In a pinch like this, it is natural to turn to fossils to see what they can tell us, but thus far it hasnt been of much use. Among fossil “coelacanth” fish, which are the closest relatives of tetrapods, some forms have two outer nostrils but no choana, just like modern fish. Other fossil coelacanths, which are even closer to tetrapods, already have a single outer nostril per side and a fully developed choana. In other words, the fossils show that the choana emerged just before our ancestors crawled up onto land, but they tell us nothing about how the choana came to be formed.

Now two researchers, Per Ahlberg from the Department of Physiology and Developmental Biology, Uppsala University, and Zhu Min from the Department of Vertebrate Paleontology in Beijing, China, are able to present a unique fossil that clarifies once and for all how our inner nostril came into being. Their results are being published this week in the internationally respected scientific journal Nature.

The fossil is a small coelacanth fish, Kenichthys campbelli, which comes from China and is roughly 400 million years old. The scientists have found skulls of several individuals: some of the bones have fallen apart, but they are so well preserved that it is possible to see exactly how they fit together. Judging from their features, Kenichthys belongs in our ancestral tree between the fossil coelacanths who have no choana and those that have this inner nostril.

Kenichthys has a back nostril that is located right on the lip, separating the two-toothed upper jawbones, the maxillan and the premaxillan. (It is as if we were to have a nostril in a gap between our front teeth and our canine teeth.) In other words, it constitutes a perfect halfway point in the nostrils migration from the face to the palate, and moreover this halfway point is the precisely the one that some scientists have regarded as an anatomical impossibility. Unfortunately the “cord” of nerves and blood vessels has not been preserved in Kenichthys, but since it normally runs from the maxillan to the premaxillan, it must either have been cut off or relegated to another position. What was considered impossible was apparently possible after all.

At this stage we still don´t know how evolution managed to re-forge the contact between the maxillan and the premaxillan and re-establish the “cord” after the nostril had migrated past. Zhu and Ahlberg hope that future developmental biological research will be able to identify the molecular mechanisms that govern the formation of this section of the head. One thing is already apparent: there is a connection between the migration of the nostril in our ancestors and the rather common problem in human developmental biology that is termed “cleft jaw”.

During the development of the human fetus, the upper jaw is formed when two processes, which will form the maxillan and the premaxillan respectively, meet under the outer nostril and grow together. In this way they separate the outer nostril from the choana. If this coalescing process does not function, a so-called “cleft jaw” is formed, that is, a furrow that runs right up into the nasal sac. This “complicated” relationship between the upper jaw and the nasal sac does not exist in fish: after all, they have no nostril on the palate, so the upper jaw is quite simply formed below the nostrils without any problematic process of coalescence. It seems as if our complicated developmental process is a “memory” of how the back nostril made its way to the palate between the maxillan and the premaxillan, and then reconnoitered again behind it. Somewhat drastically it could be said that the intermediate form Kenichthys lived with a cleft jaw all its life. Thus a really old fossil fish can elucidate not only an important aspect of our early evolution but also the reasons behind one of the most common problems of human developmental biology.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v432/n7013/abs/nature02843_fs.html

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>