Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Initial sensor for p53 tumor-suppressing pathway identified

04.11.2004


DNA breaks from radiation, toxic chemicals, or other environmental causes occur routinely in cells and, unless promptly and properly repaired, can lead to cancer-causing mutations. When the breaks cannot be repaired, and the cell is vulnerable to becoming cancerous, critical backup protection governed by the p53 protein kicks in. This protein is the end of the line in a vital signaling cascade that triggers cells with fatally damaged DNA to self-destruct so that they cannot cause cancer.



The importance of the p53 pathway in preventing cancer cannot be overstated. Scientists know, for example, that in the majority of human cancers the p53 pathway has been disabled. Despite the crucial nature of the p53 tumor-suppressor pathway, the answer to a central question has evaded researchers for years: How is the p53 pathway alerted to the presence of DNA breaks in the cell in the first place? If p53 lies at the end of the line in this pathway, what molecule is at the front, and how does it do its job?

In a new study led by researchers at The Wistar Institute, the sensor protein that identifies DNA breaks and activates the p53 cell-death program has been identified. Additionally, structural analysis of the protein and its interactions with DNA has revealed the specific mechanism by which the protein detects the breaks. The study will be published November 3 in the advance online edition of the journal Nature.


"We had been studying this protein for some time, and we knew it was important in the cellular response to DNA breaks," says Thanos D. Halazonetis, D.D.S., Ph.D., a professor in the gene expression and regulation program at The Wistar Institute and senior author on the Nature study. "Now, we know it is the initial sensor for the p53 tumor-suppressor pathway - it is responsible for detecting DNA breaks - and we also have a good idea how it works."

According to Halazonetis, the protein, known as 53BP1, recognizes a molecular site usually hidden within the DNA-packaging structure called chromatin, which makes up our chromosomes. Chromatin consists of DNA coiled around the edges of molecules called histones to form disk-shaped entities called nucleosomes. The nucleosomes themselves, then, are tightly packed together - possibly like a stack of coins, Halazonetis suggests - to form the dense chromatin. When all is as it should be with the DNA, a target site for 53BP1 lies at the center of each of the stacked nucleosome disks and is not available for binding.

"But if you have a DNA break, you can imagine that the nucleosomes might unravel and the stacking of the nucleosomes fall apart, exposing the site that 53BP1 recognizes," Halazonetis says. "This is the model we are proposing for how cells sense the presence of DNA breaks to activate the p53 pathway."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>