Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Initial sensor for p53 tumor-suppressing pathway identified

04.11.2004


DNA breaks from radiation, toxic chemicals, or other environmental causes occur routinely in cells and, unless promptly and properly repaired, can lead to cancer-causing mutations. When the breaks cannot be repaired, and the cell is vulnerable to becoming cancerous, critical backup protection governed by the p53 protein kicks in. This protein is the end of the line in a vital signaling cascade that triggers cells with fatally damaged DNA to self-destruct so that they cannot cause cancer.



The importance of the p53 pathway in preventing cancer cannot be overstated. Scientists know, for example, that in the majority of human cancers the p53 pathway has been disabled. Despite the crucial nature of the p53 tumor-suppressor pathway, the answer to a central question has evaded researchers for years: How is the p53 pathway alerted to the presence of DNA breaks in the cell in the first place? If p53 lies at the end of the line in this pathway, what molecule is at the front, and how does it do its job?

In a new study led by researchers at The Wistar Institute, the sensor protein that identifies DNA breaks and activates the p53 cell-death program has been identified. Additionally, structural analysis of the protein and its interactions with DNA has revealed the specific mechanism by which the protein detects the breaks. The study will be published November 3 in the advance online edition of the journal Nature.


"We had been studying this protein for some time, and we knew it was important in the cellular response to DNA breaks," says Thanos D. Halazonetis, D.D.S., Ph.D., a professor in the gene expression and regulation program at The Wistar Institute and senior author on the Nature study. "Now, we know it is the initial sensor for the p53 tumor-suppressor pathway - it is responsible for detecting DNA breaks - and we also have a good idea how it works."

According to Halazonetis, the protein, known as 53BP1, recognizes a molecular site usually hidden within the DNA-packaging structure called chromatin, which makes up our chromosomes. Chromatin consists of DNA coiled around the edges of molecules called histones to form disk-shaped entities called nucleosomes. The nucleosomes themselves, then, are tightly packed together - possibly like a stack of coins, Halazonetis suggests - to form the dense chromatin. When all is as it should be with the DNA, a target site for 53BP1 lies at the center of each of the stacked nucleosome disks and is not available for binding.

"But if you have a DNA break, you can imagine that the nucleosomes might unravel and the stacking of the nucleosomes fall apart, exposing the site that 53BP1 recognizes," Halazonetis says. "This is the model we are proposing for how cells sense the presence of DNA breaks to activate the p53 pathway."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>