Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered stem cells can home in on tumors and deliver drug payload in mice

03.11.2004


Researchers at The University of Texas M. D. Anderson Cancer Center have perfected a delivery system for anticancer treatment that zeroes in on a tumor and becomes part of its supporting tissue. This new "cellular vehicle" then pumps drugs directly into cancer cells to disable them, but leaves normal tissue alone.



They say their study, published in the Journal of the National Cancer Institute, is a proof of principle, conducted in mice, that shows this kind of strategy could be promising when developed for human use. "This is the most effective homing strategy seen to date, much better than any viral delivery strategy tested so far," says Michael Andreeff, M.D., Ph.D., professor in the Departments of Blood and Marrow Transplantation and Leukemia. "It is remarkable that these cells can find tumors wherever they are and become part of them."

The new approach uses human mesenchymal stem cells (MSC), the body’s natural tissue regenerators. Tissue that is injured sends signals to these unspecialized, progenitor cells, and they, in turn, migrate to the damage and morph into whatever kind of tissue - bone, fat, muscle, cartilage, tendons - is needed to repair the wound. Tumors, however, are "never-healing wounds" that also signal these stem cells, and then use them to help build up "stromal," or connective tissue, that structurally supports and nurtures tumor growth, says Andreeff. "Tumors constantly remodel their architecture with the help of these special stem cells."


Andreeff, first author Matus Studeny, M.D., who was a research fellow in Andreeff’s lab, and a group of six other researchers turned the tables on cancer, taking advantage of a tumor’s ability to attract these stem cells. They designed a novel delivery system by isolating a small quantity of MSC from bone marrow, and then greatly expanded those cells in the lab. The researchers then used a virus to deliver a particular gene that has therapeutic action against cancer into the stem cells. When given back through an intravenous injection, the millions of engineered mesenchymal progenitor cells engraft where the tumor environment is signaling them, and then activate the therapeutic gene.

The team has already tested the system in a number of different solid cancers, as well as in leukemia, to deliver different "payloads," but in this study, they looked at whether MSC engineered to carry interferon beta could treat mice that were implanted with human breast cancer or human melanoma. Interferon beta can inhibit cancer growth in laboratory tests, but is excessively toxic and short-lived when used at high doses as a therapy in patients, says Andreeff. The team tested whether MSC engineered to express an interferon beta gene could provide a sustained and targeted effect directly to cancer cells.

For each of the two cancer types, the researchers tested three groups of mice against each other: one was an untreated control group; another was injected with interferon beta daily under the skin for three weeks; and the third received three weekly doses of intravenous MSC engineered to express the interferon beta payload.

They found that the MSC cellular vehicles readily grafted themselves into the tumor stroma and proliferated. The cells also delivered its drug over a long period of time, significantly improving survival of the mice. Specifically, mice whose breast cancer was treated with MSC survived 60 days compared to 41 days in the mice injected with interferon beta, and 37 days in untreated mice. Mice with melanoma that were treated with MSC more than doubled their survival (73.5 days) compared with treated mice (32 days) and untreated mice (30 days). Andreeff says that use of interferon beta therapy in this study is less important than proof that the MSC strategy works. "The most important discovery here is that these cells are indeed homing into tumors and are capable of delivering an anticancer payload," he says. "Now we can work to test a number of different therapeutic payloads to see which works best."

He speculates that this new tactic in the war on cancer might work particularly well after patients are treated with radiation or chemotherapy, because those therapies damage cancer cells, which would then be in critical need of MSC. Andreeff hopes that this new homing strategy might offer a novel way to treat cancer that has spread. "This drug delivery system is attracted to cancer cells no matter what form they are in or where they are," he says.

Heather Sessions | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>