Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists closing in on nerve proteins’ contributions to memory and hearing loss

29.10.2004


In a finding that may one day help researchers better understand age-related memory and hearing loss, scientists have shown that two key nervous system proteins interact in a manner that helps regulate the transmission of signals in the nervous system.



Researchers report online in Nature Neuroscience that they’ve connected neuregulin-1 (Nrg-1), a protein linked to schizophrenia, and postsynaptic density protein-95 (PSD-95), a protein associated with Alzheimer’s disease. The print version appears during the first week of November.

Nrg-1 originally caught scientists’ attention because of its links to processes that encode memory in nerve cells. Scientists later found mutations in the Nrg-1 gene increased risk of schizophrenia in Scottish and Icelandic populations. Nrg-1 is positioned in the outer membrane of nerve cells, with a portion hanging outside the nerve cell and another part jutting inside it. The exterior portion, known as Nrg-ECD, contributes to the formation of synapses, areas where two nerve cells communicate across a small physical gap, and to other aspects of nervous system development and communication.


Until recently, researchers gave little attention to Nrg-ICD, the interior portion of Nrg-1. But Jianxin Bao, Ph.D., research assistant professor of otolaryngology at Washington University and other scientists have begun amassing evidence that Nrg-ICD might be as important or even more important than Nrg-ECD. "In a comparison of the frog and human genes, we earlier showed that Nrg-ICD was 87 percent identical between the two species," says Bao, who is first author of the new study. "When part of a protein is kept mostly unchanged for so long over the course of evolution, it suggests that part has some very important contributions to make."

Scientists knew that stimulation of a nerve cell causes Nrg-ECD to break off. In a previous experiment, Bao and colleagues at Columbia University found that stimulation of nerve cells in mice ears let Nrg-ICD break away from the synapse and travel to the nucleus of the nerve cell, where it blocked genes related to a cellular self-destruct process.

In the new study, researchers showed that in addition to increasing levels of Ngr-ICD, stimulation of the nerve cells caused a corresponding increase in levels of PSD-95. Normally this would lead to suspicions that Ngr-ICD was binding to DNA to increase the activity of the PSD-95 gene, but scientists already knew that Ngr-ICD can’t bind to DNA on its own.

However, Ngr-ICD can bind to zinc finger proteins, which are known for their ability to bind to DNA and change the activity levels of genes. Using a technique known as an electrophoretic mobility assay study, scientists tested Ngr-ICD’s ability to bind to parts of various zinc-finger proteins that they already knew could increase the activity of PSD-95. After this study and additional testing, they determined that Eos, a recently identified zinc finger protein, was Ngr-ICD’s most likely partner.

In its normal role, PSD-95 provides a support structure for receptors on the receiving end of a synapse. The protein has also been detected in plaques in the brains of Alzheimer’s patients. "If you have too many receptors at a synapse, the nerve cell gets overstimulated and dies," Bao notes. "Too few, and the signal can’t get through. Adjusting this ability for a signal to get through is thought to be essential to the creation of learning and memory, so a delicate balance has to be struck in this protein’s activity levels."

Bao suspects age-related decreases in Nrg-1 levels may be linked to hearing loss and memory loss, and has begun testing mice genetically modified to make more Nrg-1 to see if they have improved hearing when they are older.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>