Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists closing in on nerve proteins’ contributions to memory and hearing loss


In a finding that may one day help researchers better understand age-related memory and hearing loss, scientists have shown that two key nervous system proteins interact in a manner that helps regulate the transmission of signals in the nervous system.

Researchers report online in Nature Neuroscience that they’ve connected neuregulin-1 (Nrg-1), a protein linked to schizophrenia, and postsynaptic density protein-95 (PSD-95), a protein associated with Alzheimer’s disease. The print version appears during the first week of November.

Nrg-1 originally caught scientists’ attention because of its links to processes that encode memory in nerve cells. Scientists later found mutations in the Nrg-1 gene increased risk of schizophrenia in Scottish and Icelandic populations. Nrg-1 is positioned in the outer membrane of nerve cells, with a portion hanging outside the nerve cell and another part jutting inside it. The exterior portion, known as Nrg-ECD, contributes to the formation of synapses, areas where two nerve cells communicate across a small physical gap, and to other aspects of nervous system development and communication.

Until recently, researchers gave little attention to Nrg-ICD, the interior portion of Nrg-1. But Jianxin Bao, Ph.D., research assistant professor of otolaryngology at Washington University and other scientists have begun amassing evidence that Nrg-ICD might be as important or even more important than Nrg-ECD. "In a comparison of the frog and human genes, we earlier showed that Nrg-ICD was 87 percent identical between the two species," says Bao, who is first author of the new study. "When part of a protein is kept mostly unchanged for so long over the course of evolution, it suggests that part has some very important contributions to make."

Scientists knew that stimulation of a nerve cell causes Nrg-ECD to break off. In a previous experiment, Bao and colleagues at Columbia University found that stimulation of nerve cells in mice ears let Nrg-ICD break away from the synapse and travel to the nucleus of the nerve cell, where it blocked genes related to a cellular self-destruct process.

In the new study, researchers showed that in addition to increasing levels of Ngr-ICD, stimulation of the nerve cells caused a corresponding increase in levels of PSD-95. Normally this would lead to suspicions that Ngr-ICD was binding to DNA to increase the activity of the PSD-95 gene, but scientists already knew that Ngr-ICD can’t bind to DNA on its own.

However, Ngr-ICD can bind to zinc finger proteins, which are known for their ability to bind to DNA and change the activity levels of genes. Using a technique known as an electrophoretic mobility assay study, scientists tested Ngr-ICD’s ability to bind to parts of various zinc-finger proteins that they already knew could increase the activity of PSD-95. After this study and additional testing, they determined that Eos, a recently identified zinc finger protein, was Ngr-ICD’s most likely partner.

In its normal role, PSD-95 provides a support structure for receptors on the receiving end of a synapse. The protein has also been detected in plaques in the brains of Alzheimer’s patients. "If you have too many receptors at a synapse, the nerve cell gets overstimulated and dies," Bao notes. "Too few, and the signal can’t get through. Adjusting this ability for a signal to get through is thought to be essential to the creation of learning and memory, so a delicate balance has to be struck in this protein’s activity levels."

Bao suspects age-related decreases in Nrg-1 levels may be linked to hearing loss and memory loss, and has begun testing mice genetically modified to make more Nrg-1 to see if they have improved hearing when they are older.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>