Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists closing in on nerve proteins’ contributions to memory and hearing loss

29.10.2004


In a finding that may one day help researchers better understand age-related memory and hearing loss, scientists have shown that two key nervous system proteins interact in a manner that helps regulate the transmission of signals in the nervous system.



Researchers report online in Nature Neuroscience that they’ve connected neuregulin-1 (Nrg-1), a protein linked to schizophrenia, and postsynaptic density protein-95 (PSD-95), a protein associated with Alzheimer’s disease. The print version appears during the first week of November.

Nrg-1 originally caught scientists’ attention because of its links to processes that encode memory in nerve cells. Scientists later found mutations in the Nrg-1 gene increased risk of schizophrenia in Scottish and Icelandic populations. Nrg-1 is positioned in the outer membrane of nerve cells, with a portion hanging outside the nerve cell and another part jutting inside it. The exterior portion, known as Nrg-ECD, contributes to the formation of synapses, areas where two nerve cells communicate across a small physical gap, and to other aspects of nervous system development and communication.


Until recently, researchers gave little attention to Nrg-ICD, the interior portion of Nrg-1. But Jianxin Bao, Ph.D., research assistant professor of otolaryngology at Washington University and other scientists have begun amassing evidence that Nrg-ICD might be as important or even more important than Nrg-ECD. "In a comparison of the frog and human genes, we earlier showed that Nrg-ICD was 87 percent identical between the two species," says Bao, who is first author of the new study. "When part of a protein is kept mostly unchanged for so long over the course of evolution, it suggests that part has some very important contributions to make."

Scientists knew that stimulation of a nerve cell causes Nrg-ECD to break off. In a previous experiment, Bao and colleagues at Columbia University found that stimulation of nerve cells in mice ears let Nrg-ICD break away from the synapse and travel to the nucleus of the nerve cell, where it blocked genes related to a cellular self-destruct process.

In the new study, researchers showed that in addition to increasing levels of Ngr-ICD, stimulation of the nerve cells caused a corresponding increase in levels of PSD-95. Normally this would lead to suspicions that Ngr-ICD was binding to DNA to increase the activity of the PSD-95 gene, but scientists already knew that Ngr-ICD can’t bind to DNA on its own.

However, Ngr-ICD can bind to zinc finger proteins, which are known for their ability to bind to DNA and change the activity levels of genes. Using a technique known as an electrophoretic mobility assay study, scientists tested Ngr-ICD’s ability to bind to parts of various zinc-finger proteins that they already knew could increase the activity of PSD-95. After this study and additional testing, they determined that Eos, a recently identified zinc finger protein, was Ngr-ICD’s most likely partner.

In its normal role, PSD-95 provides a support structure for receptors on the receiving end of a synapse. The protein has also been detected in plaques in the brains of Alzheimer’s patients. "If you have too many receptors at a synapse, the nerve cell gets overstimulated and dies," Bao notes. "Too few, and the signal can’t get through. Adjusting this ability for a signal to get through is thought to be essential to the creation of learning and memory, so a delicate balance has to be struck in this protein’s activity levels."

Bao suspects age-related decreases in Nrg-1 levels may be linked to hearing loss and memory loss, and has begun testing mice genetically modified to make more Nrg-1 to see if they have improved hearing when they are older.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>