Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Discover Chemical Important In Guiding Visual System Development

28.10.2004


University of California, San Diego neurobiologists have discovered a chemical responsible for the bursts of electrical activity in the brain that guide the development of the visual system, a finding that may bring rewiring of damaged visual circuits closer to reality.



The scientists, who presented their evidence at a session of the annual Society for Neuroscience meeting in San Diego, said their discovery could also lead to a better understanding of birth defects in children born to mothers taking epilepsy medication.

Scientists have long recognized that spontaneous neural activity is needed for the normal development of the visual circuits in the brain, but how this activity is created is not well understood. UCSD researchers Marla Feller and Chih-Tien Wang detailed at the meeting their evidence that the chemical messenger adenosine controls the timing of these bursts of electrical activity. Knowing what triggers these waves of activity could make it possible to recreate them for therapeutic purposes, they said, and may shed light on disorders caused by their disruption.


“The waves of neural activity in the developing visual system have a remarkably stereotyped temporal pattern,” said Feller, an assistant professor of biology who led the study. “We show that the neurotransmitter adenosine may control this pattern by altering the excitability of cells in the retina. Ultimately findings that help us understand the mechanism that generates this spontaneous activity might make it possible to recreate it later in life; for example, to coax regenerated nerve cells to reconnect appropriately after an injury.” “Another possible application of inducing patterned retinal activity in adult circuits is to set up the wiring in people who have been blinded since birth but then have some sort of surgery—like cataract removals—that gives them sight for the first time,” added Feller.

The researchers speculated that adenosine’s role in controlling spontaneous neural activity may also explain why mothers taking medication for epilepsy are twice as likely to have children with a set of birth defects known as “fetal anti-convulsant syndrome.” The spontaneous waves of activity occur in the developing visual system of the fetus during the second trimester of pregnancy. Therefore, medications taken by the mother that influence adenosine levels in the brain of the fetus could disrupt the spontaneous activity patterns.

“Understanding adenosine’s role in modulating activity in the developing retina may explain some of the developmental defects seen in fetal-anticonvulsant syndrome,” said Wang, a postdoctoral fellow. “Drugs taken during pregnancy to control epilepsy may have effects similar to adenosine in the developing fetus. The visual problems and other developmental defects characteristic of fetal anti-convulsant syndrome could result from these drugs interfering with the spontaneous activity necessary for patterning the developing nervous system.”

A previous study by Feller and her colleagues showed that the pattern of neural activity is essential for the retinal ganglion cells—which extend projections from the retina to the brain—to form the correct connections in the brain. In mutant mice where the retinal ganglion cells fired randomly, rather than in well-coordinated waves that propagate across the retina from one cell to neighboring cells, these projections were never refined and remained as they were early in development.

To find the factor that might be responsible for coordinating the behavior of the retinal ganglion cells, Feller and Wang took electrical recordings from retinal ganglion cells kept alive in a dish. Following up on work started when Feller was a postdoctoral fellow working with Carla Shatz, a professor of neurobiology at Harvard Medical School, Feller and Wang found that drugs to enhance adenosine’s action increased the frequency of the waves of electrical activity in the cells, and decreasing adenosine’s action decreased their frequency. The electrical recordings showed that adenosine was acting directly on the retinal ganglion cells to alter how easily they could be excited.

These results provide new insight into the mechanism by which the spontaneous electrical activity essential for patterning the developing nervous system is generated, but Feller cautions that they are still preliminary. “Research into the role of spontaneous neural activity in development has progressed a great deal since the days when it was generally accepted that the genes specified everything except the final fine tuning of connections,” says Feller. “This study sheds light on the important question of how spontaneous activity is generated, but we still have much to learn about the details of the cellular processes involved.”

The study was supported by the McKnight Foundation and the National Eye Institute of the National Institutes of Health.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>