Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Discover Chemical Important In Guiding Visual System Development

28.10.2004


University of California, San Diego neurobiologists have discovered a chemical responsible for the bursts of electrical activity in the brain that guide the development of the visual system, a finding that may bring rewiring of damaged visual circuits closer to reality.



The scientists, who presented their evidence at a session of the annual Society for Neuroscience meeting in San Diego, said their discovery could also lead to a better understanding of birth defects in children born to mothers taking epilepsy medication.

Scientists have long recognized that spontaneous neural activity is needed for the normal development of the visual circuits in the brain, but how this activity is created is not well understood. UCSD researchers Marla Feller and Chih-Tien Wang detailed at the meeting their evidence that the chemical messenger adenosine controls the timing of these bursts of electrical activity. Knowing what triggers these waves of activity could make it possible to recreate them for therapeutic purposes, they said, and may shed light on disorders caused by their disruption.


“The waves of neural activity in the developing visual system have a remarkably stereotyped temporal pattern,” said Feller, an assistant professor of biology who led the study. “We show that the neurotransmitter adenosine may control this pattern by altering the excitability of cells in the retina. Ultimately findings that help us understand the mechanism that generates this spontaneous activity might make it possible to recreate it later in life; for example, to coax regenerated nerve cells to reconnect appropriately after an injury.” “Another possible application of inducing patterned retinal activity in adult circuits is to set up the wiring in people who have been blinded since birth but then have some sort of surgery—like cataract removals—that gives them sight for the first time,” added Feller.

The researchers speculated that adenosine’s role in controlling spontaneous neural activity may also explain why mothers taking medication for epilepsy are twice as likely to have children with a set of birth defects known as “fetal anti-convulsant syndrome.” The spontaneous waves of activity occur in the developing visual system of the fetus during the second trimester of pregnancy. Therefore, medications taken by the mother that influence adenosine levels in the brain of the fetus could disrupt the spontaneous activity patterns.

“Understanding adenosine’s role in modulating activity in the developing retina may explain some of the developmental defects seen in fetal-anticonvulsant syndrome,” said Wang, a postdoctoral fellow. “Drugs taken during pregnancy to control epilepsy may have effects similar to adenosine in the developing fetus. The visual problems and other developmental defects characteristic of fetal anti-convulsant syndrome could result from these drugs interfering with the spontaneous activity necessary for patterning the developing nervous system.”

A previous study by Feller and her colleagues showed that the pattern of neural activity is essential for the retinal ganglion cells—which extend projections from the retina to the brain—to form the correct connections in the brain. In mutant mice where the retinal ganglion cells fired randomly, rather than in well-coordinated waves that propagate across the retina from one cell to neighboring cells, these projections were never refined and remained as they were early in development.

To find the factor that might be responsible for coordinating the behavior of the retinal ganglion cells, Feller and Wang took electrical recordings from retinal ganglion cells kept alive in a dish. Following up on work started when Feller was a postdoctoral fellow working with Carla Shatz, a professor of neurobiology at Harvard Medical School, Feller and Wang found that drugs to enhance adenosine’s action increased the frequency of the waves of electrical activity in the cells, and decreasing adenosine’s action decreased their frequency. The electrical recordings showed that adenosine was acting directly on the retinal ganglion cells to alter how easily they could be excited.

These results provide new insight into the mechanism by which the spontaneous electrical activity essential for patterning the developing nervous system is generated, but Feller cautions that they are still preliminary. “Research into the role of spontaneous neural activity in development has progressed a great deal since the days when it was generally accepted that the genes specified everything except the final fine tuning of connections,” says Feller. “This study sheds light on the important question of how spontaneous activity is generated, but we still have much to learn about the details of the cellular processes involved.”

The study was supported by the McKnight Foundation and the National Eye Institute of the National Institutes of Health.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>