Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Discover Chemical Important In Guiding Visual System Development

28.10.2004


University of California, San Diego neurobiologists have discovered a chemical responsible for the bursts of electrical activity in the brain that guide the development of the visual system, a finding that may bring rewiring of damaged visual circuits closer to reality.



The scientists, who presented their evidence at a session of the annual Society for Neuroscience meeting in San Diego, said their discovery could also lead to a better understanding of birth defects in children born to mothers taking epilepsy medication.

Scientists have long recognized that spontaneous neural activity is needed for the normal development of the visual circuits in the brain, but how this activity is created is not well understood. UCSD researchers Marla Feller and Chih-Tien Wang detailed at the meeting their evidence that the chemical messenger adenosine controls the timing of these bursts of electrical activity. Knowing what triggers these waves of activity could make it possible to recreate them for therapeutic purposes, they said, and may shed light on disorders caused by their disruption.


“The waves of neural activity in the developing visual system have a remarkably stereotyped temporal pattern,” said Feller, an assistant professor of biology who led the study. “We show that the neurotransmitter adenosine may control this pattern by altering the excitability of cells in the retina. Ultimately findings that help us understand the mechanism that generates this spontaneous activity might make it possible to recreate it later in life; for example, to coax regenerated nerve cells to reconnect appropriately after an injury.” “Another possible application of inducing patterned retinal activity in adult circuits is to set up the wiring in people who have been blinded since birth but then have some sort of surgery—like cataract removals—that gives them sight for the first time,” added Feller.

The researchers speculated that adenosine’s role in controlling spontaneous neural activity may also explain why mothers taking medication for epilepsy are twice as likely to have children with a set of birth defects known as “fetal anti-convulsant syndrome.” The spontaneous waves of activity occur in the developing visual system of the fetus during the second trimester of pregnancy. Therefore, medications taken by the mother that influence adenosine levels in the brain of the fetus could disrupt the spontaneous activity patterns.

“Understanding adenosine’s role in modulating activity in the developing retina may explain some of the developmental defects seen in fetal-anticonvulsant syndrome,” said Wang, a postdoctoral fellow. “Drugs taken during pregnancy to control epilepsy may have effects similar to adenosine in the developing fetus. The visual problems and other developmental defects characteristic of fetal anti-convulsant syndrome could result from these drugs interfering with the spontaneous activity necessary for patterning the developing nervous system.”

A previous study by Feller and her colleagues showed that the pattern of neural activity is essential for the retinal ganglion cells—which extend projections from the retina to the brain—to form the correct connections in the brain. In mutant mice where the retinal ganglion cells fired randomly, rather than in well-coordinated waves that propagate across the retina from one cell to neighboring cells, these projections were never refined and remained as they were early in development.

To find the factor that might be responsible for coordinating the behavior of the retinal ganglion cells, Feller and Wang took electrical recordings from retinal ganglion cells kept alive in a dish. Following up on work started when Feller was a postdoctoral fellow working with Carla Shatz, a professor of neurobiology at Harvard Medical School, Feller and Wang found that drugs to enhance adenosine’s action increased the frequency of the waves of electrical activity in the cells, and decreasing adenosine’s action decreased their frequency. The electrical recordings showed that adenosine was acting directly on the retinal ganglion cells to alter how easily they could be excited.

These results provide new insight into the mechanism by which the spontaneous electrical activity essential for patterning the developing nervous system is generated, but Feller cautions that they are still preliminary. “Research into the role of spontaneous neural activity in development has progressed a great deal since the days when it was generally accepted that the genes specified everything except the final fine tuning of connections,” says Feller. “This study sheds light on the important question of how spontaneous activity is generated, but we still have much to learn about the details of the cellular processes involved.”

The study was supported by the McKnight Foundation and the National Eye Institute of the National Institutes of Health.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>