Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New tool reveals molecular signature of cancer and HIV


’LigAmp’ highly sensitive

Scientists have designed a new molecular tool, dubbed "LigAmp," to pinpoint DNA mutations among thousands of cells, the equivalent of searching for a single typo in an entire library of books. Preliminary studies in a small number of cell lines and body fluids show the ultra-sensitive test may help detect microscopic cancer and HIV drug resistance.
"Other molecular tests make it very difficult to locate a mutation in a particular cell surrounded by thousands of other cells that don’t have the mutation," says James Eshleman, M.D., Ph.D., who led the study with colleagues from the Johns Hopkins Department of Pathology and Kimmel Cancer Center. "LigAmp essentially filters background ’noise’ caused by normal cells and reveals specific mutations."

The researchers say that sensitive tests to locate mutations could identify cancer in patients at high-risk for the disease. Such tests could even help detect a recurrence of cancer by monitoring whether the number of mutations rises above a predetermined threshold value.

In addition to cancer detection, the Hopkins mutation-finder appears able to detect drug-resistant HIV. The team tested it on blood samples from a handful of patients with HIV and located DNA mistakes in the virus itself that make it resistant to certain antiretroviral drugs. Results of analyses of the new test are published in the November issue of Nature Methods.

"We designed LigAmp to improve how we look for extremely subtle variations in viral and cellular DNA," says Eshleman, an associate professor of pathology and oncology and associate director for the DNA Diagnostics Laboratory at Johns Hopkins. "The molecular code of normal cells may look identical to cancerous except for a single rung in the DNA ladder-structure."

The test works by creating a molecular "magnet" with an affinity for the DNA mistake, also known as a point mutation. If the mutation is found, the magnet binds to it and inserts a bacterial gene. The bacterial gene serves as a red flag and produces a fluorescent color visible to powerful computer programs.

In their studies, the Hopkins investigators tested LigAmp on colon cancer cell lines, blood from HIV patients, and fluid from cancer patients’ pancreatic ducts. Single mutations in colon cancer cells and drug-resistant HIV viruses were detected at dilutions of up to 1 in 10,000 molecules. Mutations of the KRAS2 gene were detected in duct fluid samples from three pancreatic cancer patients, which also corresponded to mutations found in their tumors. LigAmp also located a drug-resistance mutation, called K103N, in blood samples from three HIV patients.

Further analysis of LigAmp with larger sample sizes and blinded panels of clinical samples currently is under way. "Some initial studies show that we can simultaneously look for different mutations and quantify the number of mutated molecules present. This may help us build panels of cancer markers for screening and determine low or high levels of mutation."

Funding for this research was provided by the Maryland Cigarette Restitution Fund, the National Cancer Institute, and the National Institute of Allergy and Infectious Diseases.

Johns Hopkins colleagues working with Eshleman are Chanjuan Shi, Susan Eshleman, Dana Jones, Noriyoshi Fukushima, Li Hua, Antony Parker, Charles Yeo, Ralph Hruban, and Michael Goggins.

Vanessa Wasta | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>