Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool reveals molecular signature of cancer and HIV

27.10.2004


’LigAmp’ highly sensitive



Scientists have designed a new molecular tool, dubbed "LigAmp," to pinpoint DNA mutations among thousands of cells, the equivalent of searching for a single typo in an entire library of books. Preliminary studies in a small number of cell lines and body fluids show the ultra-sensitive test may help detect microscopic cancer and HIV drug resistance.
"Other molecular tests make it very difficult to locate a mutation in a particular cell surrounded by thousands of other cells that don’t have the mutation," says James Eshleman, M.D., Ph.D., who led the study with colleagues from the Johns Hopkins Department of Pathology and Kimmel Cancer Center. "LigAmp essentially filters background ’noise’ caused by normal cells and reveals specific mutations."

The researchers say that sensitive tests to locate mutations could identify cancer in patients at high-risk for the disease. Such tests could even help detect a recurrence of cancer by monitoring whether the number of mutations rises above a predetermined threshold value.



In addition to cancer detection, the Hopkins mutation-finder appears able to detect drug-resistant HIV. The team tested it on blood samples from a handful of patients with HIV and located DNA mistakes in the virus itself that make it resistant to certain antiretroviral drugs. Results of analyses of the new test are published in the November issue of Nature Methods.

"We designed LigAmp to improve how we look for extremely subtle variations in viral and cellular DNA," says Eshleman, an associate professor of pathology and oncology and associate director for the DNA Diagnostics Laboratory at Johns Hopkins. "The molecular code of normal cells may look identical to cancerous except for a single rung in the DNA ladder-structure."

The test works by creating a molecular "magnet" with an affinity for the DNA mistake, also known as a point mutation. If the mutation is found, the magnet binds to it and inserts a bacterial gene. The bacterial gene serves as a red flag and produces a fluorescent color visible to powerful computer programs.

In their studies, the Hopkins investigators tested LigAmp on colon cancer cell lines, blood from HIV patients, and fluid from cancer patients’ pancreatic ducts. Single mutations in colon cancer cells and drug-resistant HIV viruses were detected at dilutions of up to 1 in 10,000 molecules. Mutations of the KRAS2 gene were detected in duct fluid samples from three pancreatic cancer patients, which also corresponded to mutations found in their tumors. LigAmp also located a drug-resistance mutation, called K103N, in blood samples from three HIV patients.

Further analysis of LigAmp with larger sample sizes and blinded panels of clinical samples currently is under way. "Some initial studies show that we can simultaneously look for different mutations and quantify the number of mutated molecules present. This may help us build panels of cancer markers for screening and determine low or high levels of mutation."

Funding for this research was provided by the Maryland Cigarette Restitution Fund, the National Cancer Institute, and the National Institute of Allergy and Infectious Diseases.

Johns Hopkins colleagues working with Eshleman are Chanjuan Shi, Susan Eshleman, Dana Jones, Noriyoshi Fukushima, Li Hua, Antony Parker, Charles Yeo, Ralph Hruban, and Michael Goggins.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>