Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study: Signal overload in Alzheimer brains

26.10.2004


In studies with mice that develop the equivalent of Alzheimer’s disease that runs in families, Johns Hopkins researchers have shown that brain cells’ signals confuse the movement of implanted neuronal stem cells.



The observation reinforces the idea that disease can create "microenvironments" that affect the behavior of cells. These local environments might help recruit stem cell-based therapies in other conditions, say the researchers. The findings are to be presented Oct. 25 at the annual meeting of the Society for Neuroscience by first author Zhiping Liu, Ph.D., a research associate in pathology.

"In normal adult mice, stem cells taken from the olfactory bulb returned to the olfactory bulb -- they returned to where they belong -- even though they had come from a different mouse," says Lee Martin, Ph.D., associate professor of pathology and neuroscience at Hopkins. "In mice with Alzheimer’s disease, the stem cells went all over the place within the brain, responding to a multitude of signals whose identities we don’t even know."


Remarkably, Martin says, the stem cells were attracted to the abnormal protein bundles called amyloid plaques that cause Alzheimer’s, possibly opening the door to delivering some sort of plaque-buster. Because Alzheimer’s is characterized by a relatively global loss of brain cells, rather than loss of a particular group of cells, stem cells themselves aren’t as likely to be beneficial as in diseases where the loss is focused, such as amyotrophic lateral sclerosis and Parkinson’s disease.

The olfactory bulb, the center of smell detection, houses numerous primitive stem cells that normally feed the constant, life-long regeneration of odor-detecting nerves. Because they are found in a fairly accessible region of the brain and could conceivably be removed from a person’s olfactory bulb without causing permanent damage, adult olfactory bulb stem cells are a potential non-embryonic source for cells that could prove useful in replacing nerve cells lost due to injury or diseases like ALS and Parkinson’s.

The mice in the study were actually serving as controls for a study of stem cells in mice that develop amyotrophic lateral sclerosis, to see how the stem cells behaved in other models of neurodegenerative diseases.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>