Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixed signals to blame for restless legs syndrome

26.10.2004


Iron-deficient cells in the brain are mixing up central nervous system signals to the legs and arms causing the irresistible urges to move and creepy-crawly sensations that characterize restless legs syndrome (RLS), a Penn State College of Medicine study reports.

"Our previous studies established a physical cause for RLS showing certain cells in the brain were iron deficient," said James R. Connor, Ph.D., professor and vice chair for neurosurgery, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center. "We have now found a sequence of events that may connect that cellular iron deficiency to the uncontrollable movements of the disorder."

The study was presented today (Oct. 25, 2004) by Xinsheng Wang, M.D., Ph.D., postdoctoral fellow in Connor’s laboratory, at the Society for Neuroscience’s scientific meeting, Neuroscience 2004, held in San Diego. RLS, a syndrome that may affect 5 percent to 10 percent of the U.S. population, causes irresistible urges to move the legs and arms and is often accompanied by creepy-crawly sensations in the limbs. The sensations are only relieved by movement and become worse as the sun goes down, causing night after night of sleeplessness for those with RLS and their partners.



In normal individuals, cells in a portion of the middle brain called the substantia nigra control the production of tyrosine hydroxylase (TH), an enzyme. The cells also determine how much of the TH is phosphorylated, or activated. The active TH regulates the production of dopamine, a substance in the brain that transmits messages from the brain and central nervous system to the body, giving it instructions for normal functioning.

Connor’s team found that people with RLS have very high levels of active TH. Although this should result in more dopamine being made, in fact, the proper regulation of dopamine production is only possible with both active TH and adequate levels of iron. "We think the ’active form’ has lost its feedback mechanism," Connor said. "The cell is getting a signal that more dopamine is needed so TH is made and shifted to the active form, but the activity is compromised because less iron is available. If the iron was present in sufficient amounts, the feedback process would signal the cells to stop or slow TH production."

Connor’s team first made the connection between iron deficiency and elevated TH levels by examining the brains of iron deficient rats. After weaning, the rats were divided into two groups. One group was given a normal diet, and the second, an iron deficient diet. Half of those that were given the iron deficient diet were later put on a normal iron diet. At 65 days, all rats, regardless of diet, had elevated levels of TH drawing the connection between cellular iron deficiency in the brain and elevated TH. However, the TH levels of the rats that had started a normal diet immediately after weaning eventually returned to normal. "This shows us that developmental iron deficiency can be reversed, but that extended iron deficiency cannot be," Connor said. In a second study using a human cell culture model, the research team exposed PC12 cells, which create dopamine, to a substance that removes iron from cells. As more of the substance was added to the cells and, consequently, more iron was removed, the expression of TH grew, connecting the cellular iron deficiency to elevated TH in human cells.

In a third study, brain tissues from eight individuals with RLS were compared to tissues from the brains of five healthy individuals. The brain tissue was acquired through the Restless Legs Syndrome Foundation’s brain collection at the Harvard Brain Bank. As the animal and cell culture models suggested, the autopsy analysis of the brains of those with RLS showed that iron-deficient cells from the middle brain expressed high levels of TH compared to the non-RLS group. "These results continue to support the idea that the brain dopaminergic system is altered in RLS and that the differences in the dopaminergic system are consistent with insufficient iron," Connor said.

These findings explain why some RLS sufferers find relief from taking dopaminergic drugs. Although not FDA-approved for the treatment of RLS, the drugs are used to calm tremors in those with Parkinson’s disease. The dopaminergic agents replace dopamine in the brain and temporarily improve the nerve signal transmission to the body. "Our next steps are to continue investigations of treatment strategies for RLS involving iron supplementation and dopamine agents to attempt to reach the normal balance between iron and dopamine in the brain," Connor said.

In addition to Connor and Wang, other study authors were: John Beard, Ph.D., and Byron Jones, Ph.D., Penn State University; and Christopher J. Earley, M.B., B.Ch., Ph.D., and Richard Allen, Ph.D., Johns Hopkins Bayview Medical Center.

Valerie Gliem | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>