Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science breakthrough explains how cells repair broken DNA

25.10.2004


Scientists have identified crucial elements necessary for repairing damaged DNA – the blueprint for all living cells.



The breakthrough will further our understanding of how diseases that are associated with DNA instability, such as cancer, arise. The findings also point to how new drug therapies could be developed for treating cancer.

Dr Aidan Doherty, a reader in biochemistry at the University of Sussex’s Genome Damage and Stability Centre, led a collaboration of scientists at Sussex and in the USA and found that the process of repairing DNA breaks was much simpler than previously thought. By manipulating synthetic DNA breaks, his team showed that two proteins, Ku and Ligase, commonly found in bacteria, acted together to identify and repair these breaks.


Close relatives of these proteins are found in the cells of other living organisms, including humans and yeast. When researchers experimented on yeast cells lacking these proteins, they found that the bacterial proteins alone could repair the yeast cells’ DNA. These findings suggest that there is a common repair process that has been conserved throughout evolution from bacteria to humans.

“These findings have important implications for our understanding of repair mechanisms in human cells, “ says Dr Doherty. “Our DNA can be damaged by any number of things, from sunlight to oxygen. This happens continuously and most of the time our cells repair themselves correctly. But occasionally inaccurate repair of these breaks occurs and this has the potential to contribute to cell mutation, allowing genetic material to be lost, which can lead to DNA instability and ultimately cancer.

“Now that we have identified the essential protein activities necessary for this repair process, we can begin to understand how cells repair DNA breaks. There is a great deal of interest in designing drugs that target related repair systems in human cells to inhibit the growth of cancerous cells and we are likely to see new cancer therapies, based on these inhibitors, appearing in the next five to ten years.”

The work has recently been patented and is currently being developed as a research tool for the research and biotechnology communities.

Dr Doherty’s team carried out the research with scientists at the Michigan Medical School and University of Maryland School of Medicine. Financial support came from the Biotechnology and Biological Sciences Research Council, the Medical Research Council and the Royal Society.

A paper, entitled “Mycobacterial Ku and Ligase proteins constitute a two-component NHEJ repair machine,” was published in Science journal on October 21, 2004.

Jacqui Bealing | EurekAlert!
Further information:
http://www.sussex.ac.uk

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>