Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics Play Role in Response to Most Common Asthma Drug

25.10.2004


Study Helps Explain Why Albuterol Benefits Some Asthma Patients More Than Others



Genes affect how asthma patients respond to albuterol, according to results of a new study of adults with mild asthma. Researchers in the Asthma Clinical Research Network (ACRN) of the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, found that over time, how participants responded to daily doses of inhaled albuterol differed depending on which form of a specific gene they had inherited. While a few weeks of regular use of albuterol improved overall asthma control in individuals with one form of the gene, stopping all use of albuterol eventually improved asthma control in those with another form of the gene. Albuterol is the most commonly used drug for relief of acute asthma symptoms, or “attacks.”

The Beta-Adrenergic Response by Genotype (BARGE) trial is the first study of an asthma drug in patients selected according to their genotype, or which forms of a specific gene they have. Published in the October 23-29 issue of the Lancet,* the BARGE trial provides important insight as to why albuterol may benefit some people with asthma more than others. The findings could lead to better ways to individualize asthma therapy based on patients’ genetic patterns. “If we can pinpoint which individuals will do better with a certain type of therapy, we can improve their lives more quickly and save them -- and the healthcare system -- the expense and risk of trying drugs that are less effective for them,” comments Dr. Barbara Alving, NHLBI acting director. “This study helps put asthma at the forefront of pharmacogenetics.”


Pharmacogenetics is an emerging science that links variations in genotypes to variations in drug responsiveness. Scientists have long known that genes can play a role in how individuals respond to disease and to medications. As drugs move through the body, they interact with thousands of molecules, or proteins. Because genes direct how proteins behave, variations in the structure of a gene can affect how the protein responds to a medication. Many believe that pharmacogenetics will revolutionize health care as it will lead to the development of drugs that target specific molecules more precisely than currently available medications, making them more powerful and less likely to create unwanted side effects. Asthma drugs are known to vary widely in their effects in different patients. Research suggests that genetics may play a role in these differences.

Albuterol targets the beta-2 adrenergic receptor molecules. As an asthma quick-relief medication, it relaxes the muscles in the airways and quickly opens up the air passages during an asthma attack, when airways are narrowed. BARGE was developed based on observations from earlier studies that suggested that genetic differences in the beta-receptor might play an important role in how patients respond to albuterol.

The BARGE study examined the effects of two forms of the beta-2 adrenergic receptor in patients with mild asthma. The trial paired 78 participants with matching levels of airway function but with different forms of the receptor gene. Researchers compared participants who have two arginine versions of the gene (the arginine genotype) to those with two glycine versions of the gene (the glycine genotype). Albuterol was used daily (two puffs, four times a day) for 16 weeks, and placebo use followed the same timeframe. When participants needed additional symptom relief, they used ipratropium bromide, a different type of quick-relief medication known as an anticholinergic.

While all participants initially responded well to albuterol, after 16 weeks of daily use, those with the arginine genotype had poorer asthma control compared to their matched partners with the glycine genotype. In addition, the arginine participants reported more symptoms, lower FEV1 scores (a measurement of lung function) and more frequent use of quick-relief medication.

Overall, participants with the arginine genotype had improved asthma control when not using albuterol. In contrast, participants with the glycine genotype had better asthma control with albuterol treatment, although not with placebo.

Of the 15 million Americans who have asthma, about 1 out of 6 (more than 2 million) have the arginine genotype. Moreover, the arginine genotype is more prevalent in certain ethnic groups, such as African Americans. Currently, tests to determine this genotype are only available in a few research settings. “Anyone needing regular, daily use of albuterol for asthma control should be considered for a long-term controller medication. Our findings suggest that in patients with the arginine genotype, this will be especially important,” said Dr. Elliot Israel of Brigham and Women’s Hospital, lead author of the study. “More work is needed to determine how to integrate these findings into clinical practice. In the future, patients with the arginine genotype might even be advised to use an alternate reliever medication.”

The National Asthma Education and Prevention Program (NAEPP) recommends quick-relief medication such as inhaled albuterol on an as-needed basis for acute asthma symptoms. Other recommended reliever medications include inhaled anticholinergics and short-acting theophylline. NAEPP clinical guidelines call for a "step-wise" approach to asthma management, in which treatment is adjusted depending on disease severity and symptom frequency. Patients who have symptoms or use quick-relief medication more than a couple of times a week, for example, should add daily long-term control medication such as inhaled corticosteroids or leukotriene modifiers.

“This study highlights one of several variables that plays a role in how a medication will affect an individual,” says Dr. James Kiley, director of the NHLBI Division of Lung Diseases. “It also serves as a reminder of how important it is for asthma specialists to regularly assess how their patients are responding to medications so they can modify their drug regimen as needed.”

NHLBI established the ACRN in 1993 to conduct multiple, well-designed clinical trials for rapid evaluation of new and existing therapeutic approaches to asthma and to disseminate laboratory and clinical findings to the healthcare community. The ACRN clinical centers that participated in this study are Brigham and Women’s Hospital and Harvard Medical School (Boston), Harlem Lung Center and Columbia University (New York City), National Jewish Medical and Research Center (Denver), Thomas Jefferson Medical College (Philadelphia), University of California at San Francisco, and University of Wisconsin (Madison). Two of the clinical centers – the University of California at San Francisco and the University of Wisconsin – also received support from the NIH National Center for Research Resources. The data coordinating center is at Pennsylvania State University College of Medicine.

In a separate study, new ACRN researchers are studying whether similar effects occur with long-acting forms of medication similar to albuterol. These medications, known as long-acting beta-agonists, are increasingly used in concert with inhaled corticosteroids as long-term control medications for patients with moderate or severe asthma.

Note: Albuterol and placebo was provided by Glaxo-SmithKline. Ipratropium bromide was provided by Boehringer Ingelheim Pharmaceuticals, Inc.

| EurekAlert!
Further information:
http://www.nhlbi.nih.gov

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>