Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single genetic defect links many risk factors for heart disease and stroke

22.10.2004


For the first time, researchers have demonstrated that a single change in a person’s DNA can contribute to a range of life-shortening risk factors, including high blood pressure, high cholesterol, and other metabolic disorders.



The mutation affects the genes of the mitochondria – the energy-producing power plants of the cell that are passed from mother to offspring. The researchers are hopeful their discovery could help unravel the complex genetic and environmental factors that cause a range of metabolic disorders.

The researchers, led by Howard Hughes Medical Institute investigator Richard P. Lifton, who is at Yale University School of Medicine, published their findings October 22, 2004, in Science Express, an online component of the journal Science. Gerald I. Shulman, another HHMI investigator at the Yale School of Medicine, was also an author on the paper. "Epidemiological studies over the last twenty years have shown that hypertension, high cholesterol, high triglycerides, low magnesium, diabetes, insulin resistance, and obesity tend to cluster with one another, but not in a simple way," said Lifton. "Not everybody who has any one of these traits has all of the others. The pattern of inheritance is complicated, and there hasn’t been a clear understanding of what’s driving this relationship."


Various combinations of these abnormalities affect up to a quarter of the U. S. population, and they are contributing to a public health epidemic of heart disease and stroke.

Lifton said that one woman with hypertension and low blood magnesium levels proved to be the key to tracing the genetic cause of the array of pathologies. Since low magnesium occurs infrequently in the general population, the researchers tested her for known mutations that they had previously associated with that trait. "When we spoke to her, what stood out was that she said that a number of other family members also had low magnesium," said Lifton. "That suggested that she might have a new disease, because all the known genetic causes of low magnesium were autosomal recessives that would not occur so widely."

The woman told researchers that a number of her female relatives had the same problem. Further study of the family revealed a high frequency of high blood pressure and cholesterol. "That’s when the real saga began," said Lifton. "The family was extraordinarily cooperative, and we eventually studied 142 relatives. When we looked at the pattern of these pathologies, we found there was a whopping excess of affected individuals on the maternal lineage."

Such a pattern immediately suggested a defect in the mitochondrial genome, because those genes are uniquely passed from mother to offspring, unlike the rest of the cell’s genome, which is contained in the nucleus. Detailed sequencing of the mitochondrial genomes of family members revealed a specific mutation in all affected people. That defect was the substitution of a single DNA unit, or base, in the gene that coded for a specific transfer RNA (tRNA) in the mitochondria.

Transfer RNAs are critical carrier molecules that ferry amino acids during the constructions of proteins in the cell. During the translation of genetic material to a protein, a tRNA latches onto a specific amino acid that it was designed to carry and transports it to the site of protein synthesis. There, it docks precisely with the messenger RNA that is the protein’s blueprint and unloads its amino-acid cargo, which can then be incorporated into the elongating protein chain.

The defective base the researchers pinpointed was in the gene for the tRNA that transports the amino acid isoleucine. That defect distorted the docking region of the tRNA, preventing it from recognizing and attaching to the messenger RNA to deposit its isoleucine cargo. Thus, the faulty tRNA could lead to defects in a vast array of proteins that normally contain isoleucine, thereby contributing to a broad range of cellular malfunctions.

Once the researchers determined that a mitochondrial defect caused the diverse traits, they reexamined the family members for other problems known to be linked to mitochondrial malfunction. Indeed, they found an increased prevalence of hearing loss, migraine headaches, and weakened heart muscle, which are all known to be associated with genetic mutations in mitochondria. "What’s unique about this study and this family is that there has never before been a report of a common genetic link among any of the three traits we found -- low magnesium, hypertension, and high cholesterol," said Lifton. "This raises the general question of whether the more common forms of these traits might arise from abnormal mitochondrial function as well."

Lifton noted that although about half of the family members had each of the three traits, "they occur randomly in the family members, despite the fact that everybody has the same mutation. So our suspicion is that there are either genetic or environmental modifiers that dictate which specific outcomes will result from the mutation," he said. "But it was particularly striking that the complex pattern of clustering that we see arising from this single mutation has many of the hallmarks of the kinds of clustering that we see in the general population."

The discovery of the genetic defect could open new avenues for basic research and treatment, said Lifton, and could help explain why problems such as hypertension increase with age. The mutation could, for example, link hypertension to the age-related decline in mitochondrial function, which was identified by Shulman.

Lifton has no illusions that defining the mechanisms underlying such linkages will be easy. "We have identified this defect and linked it with these traits, but there remains a complex black box in between," he said. "We don’t know the mechanism that links the two." A better understanding of this mechanism could yield new treatments, said Lifton. He speculated that the genetic defect might produce clinical pathologies by crippling the energy-production capability of the mitochondria. Alternately, it might increase the production of reactive oxygen species that cause wear and tear on blood vessels, contributing to high blood pressure and other problems.

Differentiating between the two possibilities is important, he said, because each would suggest a very different therapeutic approach. "If it proved to be the former mechanism, you would want treatments to try to rev up mitochondrial energy production," Lifton said. "If it was the latter, treatments might aim at using antioxidants to prevent damage caused by reactive oxygen species."

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Bacterial control mechanism for adjusting to changing conditions: How do bacteria adapt?
13.12.2017 | Technische Universität München

nachricht Cellular Self-Digestion Process Triggers Autoimmune Disease
13.12.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>